
A Two-Stage Algorithm to Reduce Encoding Delay
of Turbo Source Coding

Javad Haghighat and David V. Plant
Department of Electrical and Computer Engineering, McGill University

McConnell Engineering Building, Room 644, 3480 University Street, Montreal, Quebec, H3A 2A7, Canada
Email: {javad.haghighat, david.plant}@mcgill.ca

Abstract—Lossless turbo source coding employs an iterative
encoding algorithm to search for the smallest codeword length
that guarantees zero distortion. Although such encoder achieves
promising compression rates, running the iterative algorithm for
each individual message block imposes a large delay on the
system. To reduce this delay, we propose a two-stage encoding
algorithm for turbo source coding. We show that converging
to zero distortion after a definite number of iterations, can be
predicted from the earlier behavior of the distortion function. This
will enable us to produce a quick, and yet sufficiently accurate,
estimate of the codeword length in the first encoding stage. In
the second stage, we iteratively increase this estimated codeword
length until reaching zero distortion. Also, we show that employing
an auxiliary distortion measure at the first stage of encoding may
allow for better estimates and decrease the delay furthermore.
Numerical results show that the proposed algorithm will decrease
the encoding delay up to 19%. Although there are previous works
in the literature on delay reduction of turbo source coding, those
works achieve lower delays by reducing the message block length.
However, the proposed algorithm achieves lower delays for the
same block length and therefore the actual “per bit” encoding
delay is decreased.

I. INTRODUCTION

In recent years application of turbo codes for source coding
has received a great deal of attention. Researchers mainly
focus on the case when the message is a biased binary i.i.d.
sequence and consider two different types of turbo source
coding schemes: (a) near-lossless turbo source coding where
small levels of average distortion (bit error rate) can be tolerated.
This definition for near-lossless coding is borrowed from [5].
It is worth mentioning that in image compression near-lossless
coding is defined by setting the maximum distortion of a pixel
below a threshold (see [10] for example). (b) lossless turbo
source coding, where the distortion is forced to be zero.

Near-lossless turbo source coding is considered in many
works including [1]-[4]. The message is delivered to a turbo
encoder to generate parity bits. The parity bits are then punc-
tured to a fixed compression rate; and the non-punctured parities
are transmitted to the decoder. The decoder regenerates the
message which is now distorted. This distortion is a function of
the selected compression rate; i.e. a desired distortion level is
achievable by defining the proper compression rate. Although
applicable in most cases, near-lossless coding is not acceptable
in applications such as compression of medical images, where
image details are of extreme importance. This is because
allowing a small average distortion may result in high levels
of distortion on some parts of the image and damage some
important details.

Lossless turbo source coding is first presented in [5] and
then revisited in works including [6], [7]. The main idea of

lossless turbo source coding is to place a decoder at the
encoder side and check if the (tentatively) generated codeword
can be successfully decoded (a similar idea is presented for
low density parity check codes and fountain codes in [8]
and [9], respectively). If decoding errors are observed, the
encoder appends more bits to the codeword and repeats tentative
decoding until the first successful decoding is reached. We refer
to this procedure as iterative encoding. Such encoder generates
variable length codewords with minimum length required to
reproduce the original message with no distortion (although
the message block length is fixed). Therefore, it achieves the
minimum compression rate required to achieve zero distortion.
Large block length codes can achieve compression rates close to
the source entropy. For example, the work in [6] studies repeat-
accumulate (RA) codes as special cases of serially concatenated
turbo codes, and designs RA codes with message block length
216 bits that losslessly compress a binary i.i.d. source with en-
tropy 0.47 bits/sample to a compression rate of 0.50 bits/sample.
One important drawback of lossless turbo source coding is
that several rounds of tentative decoding require several turbo
decoding iterations that impose a large encoding delay on the
system.

Our contribution is to propose a two-stage iterative encoding
algorithm to achieve same compression rates with smaller
encoding delay. In the first stage, we utilize an auxiliary dis-
tortion measure that quickly searches for a sufficiently accurate
estimate of the codeword length. The desired accuracy is defined
by an auxiliary threshold. In the second stage, the estimated
length is examined by the actual distortion measure and tentative
decoding continues until reaching zero distortion. The problem
formulation, and presentation of the new algorithm contains all
types of discrete i.i.d. sources. However, for simulation results
we focus on binary i.i.d. sources. The paper is organized as
follows. Section II formulates the problems of source coding
under two different conditions (i) When the expected value of
distortion is required to be below a threshold. Near-lossless
turbo source coding can be viewed as a special case of this
problem (ii) When the maximum distortion is required to be
below a defined threshold. In this case we need to run the
iterative encoding algorithm. Lossless turbo source coding can
be viewed as a special case of this problem. In Section III
we propose our two-stage encoding algorithm. In Section IV
we present simulation results for lossless turbo source coding
of a binary biased i.i.d. source. We present numerical results
that show the modified algorithm can decrease the encoding
delay up to 19%, while maintaining the same compression rate.
Concluding remarks are presented in Section V.

978-1-4244-1722-3/08/$25.00 ©2008 IEEE. 1

It is worth mentioning that delay reduction of turbo source
coding is also considered in [7]. However, [7] reduces the
delay by decreasing the message block length and designing
powerful codes for that shorter block length. Thus, the “per-
block” encoding delay (latency [7]) is reduced. However, our
proposed algorithm reduces the number of encoding iterations
for a message with a given block length. Therefore, the actual
“per-bit” encoding delay is reduced.

II. SOURCE CODING UNDER EXPECTED AND MAXIMUM

DISTORTION CONSTRAINTS

Let x be a message vector consisting of n samples of a
source X , each sample taken from a finite alphabet χ. Consider
a source encoder with an encoding function f(., .) that encodes
x to a codeword y = f(x, l), where l is called the codeword
length (in bits). This encoder has a compression rate of R = l

n
bits/sample. The codeword y is delivered to a source decoder
with a decoding function g(., .) to generate x̂ = g(y, T ∗) as an
estimate of x. T ∗ is the amount of time required to terminate
decoding. The accuracy of this estimation, x̂, is evaluated by
a distortion measure d1(x, x̂). By absorbing functions f(., .)
and g(., .), the distortion could be alternatively represented by
a function d(x, l, T ∗) which represents the distortion caused by
encoding x to a codeword with length l bits, and allowing a
decoding time of T ∗. For example, the normalized Hamming
distortion between a binary vector x and its binary reconstruc-
tion x̂ is defined as

d(x, l, T ∗) =
1
n

n∑
i=1

(xi ⊕ x̂i), (1)

where x = x1x2...xn, x̂ = g(f(x, l), T ∗), and ⊕ represents
binary addition. Generally, we assume that d(x, l, T ∗) is a non-
increasing function of l and T ∗.

Now we consider two different source coding problems,
source coding under expected distortion constraint and source
coding under maximum distortion constraint.

A. Source Coding Under Expected Distortion Constraint

In this problem the goal is to find the minimum compression
rate to have Exd(x, l, T ∗) ≤ D where Ex is the expected value
with respect to x, and D ≥ 0 is a defined threshold. In this
case we search for a codeword length

l∗ = Min
Exd(x,l,T∗)≤D

l, (2)

and fix this codeword length for every message vector. This
scheme has the advantages of having a fixed length output and
no encoding delay (except for the amount of time required
to execute function f(., .)). For near-lossless turbo source
coding of biased binary sources, we normally consider the
normalized Hamming distortion measure. The expected value
of this measure will give the bit error rate. The threshold D is
usually set to some value about 10−5 (i.e. bit error rate below
10−5 is considered near-lossless).

B. Source Coding Under Maximum Distortion Constraint

In this problem the goal is to find the minimum average
compression rate to have d(x, l, T ∗) ≤ D, ∀x (this definition
is different from the standard maximum distortion constraint

defined by Max
i

d1(xi, x̂i) ≤ D. For lossless source coding

these conditions agree as d(x, l, T ∗) = Max
i

d1(xi, x̂i) = 0).

In this case the codeword length varies for different message
vectors and is calculated as

l∗x = Min
d(x,l,T)≤D

l. (3)

For lossless turbo source coding we normally consider the
normalized Hamming distortion measure and allow no distortion
by setting D = 0. To calculated l∗x for each x, the source
encoder has a built-in decoder and runs the following iterative
algorithm to find l∗x (This is similar to the algorithm presented
in [5]).

Algorithm I
l∗x = lo, i∗x = 1
if d(x, lo, T

∗) ≤ D

{while d(x, l∗x, T ∗) ≤ D

{l∗x = l∗x − m

i∗x = i∗x + 1};
l∗x = l∗x + m};

if d(x, lo, T
∗) > D

{while d(x, l∗x, T ∗) > D

{l∗x = l∗x + m

i∗x = i∗x + 1};};

i∗x is the number of iterations required to find l∗x, and lo is
an optimum initial length, calculated to minimize E(i∗x) (the
calculation method is explained in Appendix A). Note that
calculation of i∗x is not necessary for encoding of the message
block x. The counter i∗x is employed to assess the encoding
delay. The reason we set i∗x = 1 in Line 1, is that the algorithm
begins by calculating d(x, lo, T

∗) (Lines 2 or 7) that already
requires one encoding iteration. The reason l∗x is incremented
in Line 6 is that the “while” loop terminates when d(x, l∗x, T ∗)
has exceeded the threshold D. Therefore, to keep the distortion
below D, we have to increase the codeword length. The integer
m ≥ 1 is a parameter that trades off the number of iterations for
the codeword length. By increasing m, a larger codeword length
(less compression) is found by running the encoding algorithm
for a smaller number of iterations (smaller i∗x). The encoding
delay associated with each message vector x is represented by
Δ∗

x = T ∗ × i∗x.
Generally speaking, source coding schemes under maximum

distortion constraint provide a smaller expected distortion (for
the same threshold D) and a smaller average compression rate,
R = E(l∗x)

n . The disadvantages are having a variable-length
scheme and an average encoding delay time of Δ = E(Δ∗

x) =
T ∗ × E(i∗x).

As stated before, by changing the step size m in the iterative
encoding algorithm, one can trade off compression rate for
delay. Also, increasing parameter T ∗ allows for a more accurate
decoding at the expense of increasing the delay. A more accurate
decoding may keep the distortion below the threshold for a
smaller codeword length. This will decrease the compression
rate. Therefore, the decoding time, T ∗, is another parameter to
trade off delay for rate.

2

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.02

0

0.02

0.04

0.06

0.08

0.1

Iteration number

N
o

rm
al

iz
ed

 H
am

m
in

g
 D

is
to

rt
io

n

Fig. 1. Mean and standard deviation of d(x, l∗x, t) (circles) and d(x, l∗x−m, t)
(squares), for n = 1024, m = 64, and T ∗ = 10. The source is binary i.i.d.
with Pr(1) = p = 0.10.

III. THE PROPOSED ENCODING ALGORITHM

To explain the idea of our proposed algorithm, let us consider
two random processes d(x, l∗x, t) and d(x, l∗x−m, t). For a fixed
decoding time t, d(x, l∗x, t) and d(x, l∗x − m, t) are functions
of the random message vector x, and are regarded as random
variables. From (3), it is known that at time t = T ∗, the
probability density functions (or probability mass functions) of
d(x, l∗x, t) and d(x, l∗x − m, t) are zero for any value greater
than D, and less than or equal to D, respectively. Thus, the
threshold D can be used to detect the codeword length l∗x. For
times t < T ∗ distributions of d(x, l∗x, t) and d(x, l∗x −m, t) are
not separated and setting any threshold D̂ will result in detection
errors. However, if this auxiliary threshold is set properly, it may
result in a small error probability and the errors can be corrected
in a second stage of encoding. On the other hand, allowing a
decoding time t < T ∗ will reduce the encoding delay.

Figure 1 shows the mean and standard deviation of d(x, l∗x, t)
(circles) and d(x, l∗x − m, t) (squares) for different values of t.
The message block length is n = 1024, the step size is m =
64 bits, and maximum number of iterations is T ∗ = 10. The
source is binary i.i.d. with Pr(1) = p = 0.10. It is observed
that by increasing t, mean and standard deviation of d(x, l∗x, t)
converge to zero. However the mean of d(x, l∗x−m, t) does not
converge to zero and the standard deviation slightly increases.
The important observation here is that for t = 1, the two random
variables are distributed very close to each other. However, for
all values t > 1 (especially for t > 2) they are fairly separated
and a threshold can be set to detect l∗x.

Based on the above observations, we propose a two-stage
encoding algorithm as follows:

Initialization: choose t < T ∗, T ≥ T ∗, and an auxiliary
threshold D̂.

Stage 1: Estimate l∗x as l̂x, where l̂x is the smallest codeword
length which provides d(x, l̂x, t) ≤ D̂.

Stage 2: Increase l̂x to reach the first codeword length lx with
d(x, lx, T) ≤ D.

Notice that in Stage 2, we only increase l̂x (if necessary).

Therefore, if T = T ∗, the achieved codeword length is
always grater than or equal to l∗x (since l∗x is the smallest
length to achieve d(x, lx, T ∗) ≤ D). In fact, in this case
lx = Max(l̂x, l∗x). To decrease lx and reduce the average
compression rate to the rate that is achieved by Algorithm I,
we let a more accurate decoding in Stage 2 by increasing the
number of decoding iterations (choosing T ≥ T ∗). The final
codeword length lx is also an estimate that can be greater or
less (because of T ≥ T ∗) than l∗x. However, by choosing proper
values for t, D̂, and T , the proposed algorithm can achieve
E(lx) = E(l∗x) (i.e. the same average compression rate).

In some cases it is observed that replacing the actual dis-
tortion measure, d(., ., t), by an auxiliary distortion measure,
d̂(., ., t), in Stage 1 will allow for better separation of distribu-
tion functions of d(x, lx, t) and d(x, lx −m, t), and will give a
better estimate of the codeword length. Therefore, we will use
this auxiliary distortion measure in formal presentation of our
proposed algorithm. Also, simulation results contain an example
that gives an idea how this auxiliary function may help reduce
the delay (see Fig. 4). However, in this paper we do not aim
to explore methods to search for good auxiliary measures. Also
note that in Stage 2 we still use the actual distortion measure,
d(., ., T).

The proposed algorithm is formally presented below:

Algorithm II
Stage 1:
-Initialization: choose t < T ∗, T ≥ T ∗, and an auxiliary

threshold D̂.
-Run Algorithm I to find l̂x = Min

d̂(x,l,t)≤D̂
l after îx iterations.

Stage 2:
-Initialization: Let ix = 1, lx = l̂x.
-While d(x, lx, T) > D

{lx = lx + m

ix = ix + 1};

In Stage 1 the iterative encoding begins from an optimum initial
length l̂o calculated based on the probability mass function of
l̂x and according to the approach presented in Appendix A. This
initial length will minimize E(̂ix). Then in Stage 2 we execute
only the lower half of Algorithm I to reach the first codeword
length lx ≥ l̂x with d(x, lx, T) ≤ D. By running this algorithm,
the encoding delay for each message block x is

Δx = t × îx + T × ix. (4)

Therefore, we achieve a rate-distortion pair of R = E(lx)
n , Δ =

t × E(̂ix) + T × E(ix). By changing the function d̂(., ., .) and
the parameters T , t, and D̂, different pairs (R,Δ) are generated
and a rate-delay region is found. The lower bound of this region
will represent the smallest delay achievable by the proposed
algorithm, given a fixed compression rate (or vice versa).

Notice that now the source decoder must perform T ≥
T ∗iterations to successfully decode x to a distortion below
D. However, this increase in decoding time can be tolerated;
because the system is constrained by the encoding delay that is
larger than the decoding delay.

3

0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72
0

2

4

6

8

10

12

14

16

18

20

22

24

Compression Rate (bps)

E
n

co
d

in
g

 D
el

ay
 (

it
er

at
io

n
s)

T*=3

T*=9

T*=6

B

A

Fig. 2. The rate-delay region achieved by Algorithm II for message block
length n = 1024, and step size m = 64. Lower envelope of the region is
marked by dashes. Diamonds show rate-delay pairs found by running Algorithm
I for different values of T ∗.

IV. SIMULATION RESULTS

In this section we focus on the case where the source is biased
binary i.i.d., i.e. x consists of n independent bits with Pr(1) =
p < 0.5. We consider the turbo source coding scheme with
the following encoding-decoding functions: (i) The encoding
function f(x, l) is executed by passing x through two parallel
concatenated convolutional codes, interleaving the parities, and
then puncturing the interleaved parities to achieve the proper
codeword length lx. The second convolutional code is preceded
by an interleaver that could be different from the one applied to
interleave parities. In practice, all the steps before puncturing
are executed only once; then the output is stored and each time
is punctured to generated the codewords with the proper lengths.
See [5], [7] for details on encoder’s structure. (ii) The decoding
function, g(y, T) is executed by performing the usual turbo
decoding on codeword y for T iterations. The only difference
is that the source a priori knowledge (Pr(xi = 1) = p) is
present at the decoder in the form of an L-value, log 1−p

p . See
[5] for details on decoding.

Stage 2 of Algorithm II begins by calculating d(x, l̂x, T) that
requires running turbo decoding on codeword y = f(x, l̂x) for
T iterations. Since in Stage 1 we already calculated the extrinsic
L-values for this codeword after t iterations, these L-values may
be given to the decoder in Stage 2 to decrease the encoding
delay by t iterations. This decrease is considered in presenting
our simulation results. For the simulations in this section we
use convolutional codes with generator polynomials 1+D2

1+D+D2 .
The message block length and the step size are set to n =
1024, and m = 64, respectively. Before delivering to the second
convolutional code, the message is interleaved using a random
interleaver (generated once and fixed after that). This interleaver
is fixed for all simulations. Also, a 4×256, block interleaver is
used to interleave parities generated by the convolutional codes.

Figure 2 shows the inner rate-delay region (gray dots)
achieved by Algorithm II for a binary i.i.d. source with p =

512 576 640 704 768
0

0.1

0.2

0.3

0.4

0.5

0.6

448 512 576 640 704 768 832
0

0.1

0.2

0.3

0.4

0.5

0.6

codeword length (bits)

m
as

s
fu

n
ct

io
n

 v
al

u
es

Fig. 3. Distribution of l∗x for T ∗ = 6 (top) and l̂x for (t, D̂) = (2, .052)
(bottom). Message block length is n = 1024, and step size is m = 64.

0.10, message block length n = 1024, and step size m = 64.
The same normalized Hamming function is used as the auxiliary
distortion measure in Stage 1. Other parameters are changed in
the following ranges: 2 ≤ t ≤ 10 (turbo decoding) iterations
, t ≤ T ≤ 10 iterations, and 0 ≤ D̂ ≤ p. Turbo decoding
iteration is used as the unit to measure all delays. The lower
envelope of this region is marked by dashes. This envelope is not
convex; but it can be made convex by using two encoders and
allowing time sharing. The diamonds in Fig. 2 mark rate-delay
pairs achieved by running Algorithm I for different decoding
times, T ∗. As observed, most of these points fall above the lower
envelope, which means by running Algorithm II we are able
to achieve smaller encoding delays for the same compression
rates. For example, setting T ∗ = 6 in Algorithm I, gives a
compression rate R = 0.630 bps. The distribution of codeword
length l∗x is depicted in Fig. 3. On the average, this encoding
takes E(Δ∗

x) = 13.33 turbo decoding iterations. However,
by setting (T, t, D̂) = (7, 2, .052), Algorithm II achieves the
same compression rate by spending an average encoding delay
of E(Δx) = 10.78 iterations (point A in Fig. 2). For this,
Algorithm II first executes Stage 1 by setting (t, D̂) = (2, .052)
and achieves an estimated codeword length l̂x. The distribution
of this estimated length is shown in Fig. 3. Then the algorithm
sets the codeword length to lx = l̂x and the decoding time
to T = 7 (Stage 2) and continues by incrementing lx until
achieving zero distortion. Notice that this time T = 7 iterations
are required to reconstruct the message at the decoder side (see
Remark III). By calculation, E(Δ∗

x−Δx)
E(Δ∗

x) = 0.191, i.e. Algorithm
II decreases the encoding delay by 19.1%. As the compression
rate increases, the modified algorithm becomes less effective.
For example, the rate-delay point achieved by T ∗ = 3, is very
close to its corresponding point on the lower envelope (marked
by point B in Fig. 2). Table I lists different rate-delay points
found by Algorithm I and compares them with the point on the
lower envelope with the same rate.

To illustrate the effect of auxiliary distortion measure, we
define an auxiliary measure that is a function of the vector of
a posteriori L-values. If the vector of a posteriori values is

4

TABLE I
AVERAGE ENCODING DELAY USING ALGORITHM I WITH PARAMETER T ∗ ,
AND ALGORITHM II WITH PARAMETERS (T, t, D̂). THE MESSAGE BLOCK

LENGTH IS n = 1024, AND THE STEP SIZE IS m = 64.

T ∗ (T, t, D̂) E(Δ∗
x) E(Δx) R

9 (10, 3, .053) 19.50 15.66 0.610
8 (9, 3, .048) 17.52 13.88 0.615
7 (8, 3, .045) 15.62 12.79 0.620
6 (7, 2, .052) 13.33 10.78 0.630
5 (6, 2, .044) 10.86 9.01 0.645
4 (5, 2, .034) 8.78 7.62 0.670
3 (4, 2, .018) 6.62 6.48 0.715

represented by v = v1v2...vn, then we know [5]:

Pr(x̂i = xi) =
{

evi

1+evi
, xi = 0

1
1+evi

, xi = 1
, (5)

where x = x1x2...xn, x̂ = x̂1x̂2...x̂n. After running t turbo
decoding iterations, we calculate the values Pr(x̂i = xi) from
the vector v; then we define the auxiliary distortion measure as

d̂(x, x̂) =
1
n

n∑
i=1

Pr(x̂i �= xi), (6)

where Pr(x̂i �= xi) = 1 − Pr(x̂i = xi). This distortion
measure takes all real values from 0 to 1, in contrast to the
normalized Hamming distortion measure that only takes n + 1
values (0, 1

n , ..., 1). Figure 4 shows the lower envelope of
the rate-delay region, without and with applying the auxiliary
distortion measure in Stage 1 of Algorithm II. Three types of
binary i.i.d. sources with p = 0.08, 0.10, 0.12 are considered.
It is observed that in all cases, applying the auxiliary measure
slightly improves the performance of the encoding algorithm
(up to 1.0 iterations). By exploring better auxiliary distortion
measures, one might further decrease the delay of turbo source
encoding.

V. CONCLUSION

We proposed a two-stage algorithm to reduce encoding delay
of lossless turbo source coding. By defining an auxiliary thresh-
old, and allowing a small decoding time, the algorithm gives
a quick estimate of the codeword length. Then this estimated
length is iteratively increased to reach zero distortion. In contrast
to previous works that achieve lower delays by reducing the
message block length, the proposed algorithm achieves lower
delays for the same block length; therefore, the actual “per bit”
encoding delay is decreased. According to our numerical results,
the proposed algorithm reduces the encoding delay up to 19%.
We also showed that employing an auxiliary distortion measure
in the first stage of encoding, could give a better estimate of
the codeword length; that results in a further reduction of the
encoding delay.

APPENDIX A
CALCULATING THE OPTIMUM INITIAL CODEWORD LENGTH

The codeword length l∗x is a discrete random variable with
a probability mass function (see Fig. 3 for example). Let ql =
Pr(l∗x = l) be the mass function value for length l. Now let
Algorithm I begin by setting l∗x = lo, for all x and for some
fixed integer lo. From Algorithm I, it is observed that for all

0.55 0.6 0.65 0.7 0.75
5

6

7

8

9

10

11

12

13

14

Compression Rate (bps)

E
n

co
d

in
g

 D
el

ay
 (

it
er

at
io

n
s)

p=0.08

p=0.10 p=0.12

Fig. 4. The lower envelope of the rate-delay region without applying auxiliary
distortion measures (Solid) and with applying auxiliary distortion measure
(Dashes). Message block length is n = 1024, and step size is m = 64 bits.

message blocks x with l∗x ≤ lo (i.e. d(x, lo, T
∗) ≤ D), the

required number of encoding iterations is i∗x = i∗l∗x = lo −
l∗x + 2. Also, for every x with l∗x > lo (i.e. d(x, lo, T

∗) >
D), the required number of iterations is i∗x = i∗l∗x = lo − l∗x +
1. We choose the initial length lo that minimizes E(i∗x| lo) =∑

l∗x
ql∗xil∗x .

ACKNOWLEDGMENT

The authors would like to thank the Natural Science and
Engineering Council of Canada for its support.

REFERENCES

[1] J. Garcia-Frias, and Ying Zhao, “Compression of correlated binary sources
using turbo codes,” IEEE Communications letters, vol. 5, No. 10, pp. 417-
419, Oct. 2001.

[2] J. Garcia-Frias, and Y. Zhao, “Compression of binary memoryless sources
using punctured turbo codes,” IEEE Commun. Lett., Vol. 6, No. 9, pp.
394-396, Sept. 2002.

[3] J. Bajcsy, and P. Mitran, “Coding for the Slepian-Wolf problem with turbo
codes,” In Proc. IEEE Globecom 2001, pp. 1400-1404, Nov. 2001.

[4] A. Aaron, and B. Girod, “Compression with side information using turbo
codes,” In Proc. Data Compression Conf., DCC 2002, pp. 252-261, April
2002.

[5] J. Hagenauer, J. Barros, and A. Schaeffer, “Lossless turbo source coding
with decremental redundancy,” in Proc. 5th int. ITG conf. on Source and
Channel Coding, SCC 04, Erlangen, Germany, Jan. 2004.

[6] N. Dütsch, “Code optimisation for lossless compression of binary memo-
ryless sources based on FEC codes,” European Transactions on Telecom-
munications, Vol. 17, Issue 2, March-April 2006, pp. 219-229.

[7] J. Haghighat, W. Hamouda, and M. R. Soleymani, “Design of Lossless
Turbo Source Encoders,” IEEE Signal Processing Letters, vol. 13, Issue
8, Aug. 2006, pp. 453-456.

[8] G. Caire, S. Shamai, and S. Verdu, “Noiseless data compression with
low-density parity-check codes,” DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 66, pp. 263-284, 2004, American
Mathematical Soc.

[9] G. Caire, S. Shamai, A. Shokrollahi, and S. Verdu, “Fountain codes
for lossless data compression,” DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 68, pp. 1-20, 2006, American
Mathematical Soc.

[10] R. Ansari, N. Memon, and E. Ceran, “Near-lossless Image Compression
Techniques,” Journal of Electronic Imaging, pp. 486-494, July 1998.

5

