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Abstract-We consider the problem of joint decoding and data­
fusion in data gathering sensor networks modeled by the Chief
Executive Officer (CEO) problem. Correlation between sensors'
data is known at the fusion center and is employed to update ex­
trinsic information received from soft-in soft-out (SISO) decoders.
It is shown in the literature that this scheme has a lower bit
error rate compared with the schemes that separately decode data
received from each sensor and then estimate the value of the source.
Previous works consider correlated Gaussian sources and apply
a single SISO decoder. We consider the binary CEO problem,
where all sensors observe the same binary source corrupted by
independent binary noises, and apply turbo codes to encode
and transmit them to the fusion center. We show how extrinsic
information is passed between SISO decoders and the vertical­
decoding unit that updates extrinsic information using channel
correlations. We illustrate the performance of the joint decoder for
different correlations and rates. Simulation results show promising
improvements compared with the separate decoding scheme. We
also compare the bit error rates achieved by turbo codes with the
ones achieved by convolutional codes and discuss the results.

Index Terms- CEO problem, sensor networks, iterative decoding,
turbo codes.

I. INTRODUCTION

The increasing attention given to new applications of wire­
less sensor networks (WSNs) is a reason for new interests
in evaluating source-channel communications in multi-terminal
systems. Such applications include environmental and structural
monitoring, rescue operations and disaster recovery, health care
and medical applications, film-making and media production, to
name a few [1], [2]. A WSN consists of a collection of small,
low-power sensor nodes spread across a geographical area for
performing distributed sensing tasks and measuring physical
phenomena. It is a rapidly-deployable network that does not
require any fixed infrastructure. In this paper, we consider a
data gathering WSN. For instance, consider WSNs at sites
of accidents such as collapse of a building (Fig. 1) to detect
and locate trapped survivors, or to track natural gas and toxic
substances [2]. This type of WSN can be modeled by the CEO
problem [3], which is an abstract model for remote monitoring
in wireless networks.

In the CEO problem, a CEO is interested in a source
that cannot be observed directly. N agents (sensors) observe
independent noisy versions of the source, separately encode
their observations, and then transmit through rate-constrained
channels to a single fusion center (FC) for further processing.
The scenario is shown in Fig. 2. The FC intends to form an
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Fig. 1. A data-gathering wireless sensor network. The target data is observed
by N sensors (the figure shows N = 8 sensors). The sensors encode and
transmit their observations to a decoder or fusion center. The decoder aims to
obtain an estimate of the source.

optimal estimate of the source based on information received
from the agents. The CEO problem is considered for the discrete
case in [3] and for the quadratic Gaussian case in [4], [5], [6],
[7], [8].

We assume that the coded sequences from sensors are
transmitted to the FC through independent binary symmetric
channels (BSCs). When the channels between sensors and the
FC are ideal (i.e. with cross over probability of zero), FC may
estimate the source by separately decoding the data received
from each sensor and voting among the binary outcomes.
However, for noisy channels this separate decoding generally
leads to a suboptimal performance. In [9] an iterative joint
decoding algorithm is proposed for data-gathering WSNs. After
decoding the data received from each sensor, the soft values, i.e.,
log-likelihood ratios (LLRs), are passed to a separate unit that
updates them by taking the statistical knowledge, i.e. correlation
between transmitted data, into account. Updated information is
returned to the decoders and the process continues for a definite
number of iterations. This is similar to the problem of turbo
equalization [10], [11] where the knowledge of inter-symbol
interference is employed to update LLRs for the next round of
decoding. An approach similar to [9] appears in a pioneer work
of [12] where low-density generator matrix (LDGM) codes
are applied for binary CEO model with independent additive
white Gaussian noise (AWGN) channels between sensors and
the FC. However, that work considers iterative decoding over
the graph of the whole system (instead of iterating extrinsic
information between distinct modules). This will reduce the
bit error probability at the expense of increasing decoding
complexity.
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Fig. 2. A sensor network with binary CEO model. x is a sequence of i.i.d. Bernoulli random variables with Pr(x(k) = 0) = 0.5. The vectors Yn'S are
observations of x through independent binary-symmetric channels (BSCs) with cross-over probabilities Ps. The sensors encode and transmit their observations as
u~ s with a rate R n to a joint decoder through independent BSCs with cross-over probabilities Pc . The decoder fuses these N sequences together and provides
an estimate of the source sequence x as x.

with probability 1 - Ps. Each sensor encodes its data using
two parallel concatenated convolutional codes (turbo code).
Turbo encoders of different sensors are not able to communicate
with each other to directly exploit the correlation between their
inputs. The coded sequence, u., == {un(k)}J:"=iM , consists of
information bits, {u n(k)}J:"=l == {Yn(k)}J:"=l' and parity bits
{Un (k)} J:"=+~1 that are generated by the two convolutional
codes and are punctured to achieve a desired rate. The positions
of punctured parities are selected randomly, but are fixed and
known at both encoder and decoder. The FC receives the data of
all sensors as a matrix {rn(k)}f~M, 1 < n < N and estimates
the source as a sequence {x(k)} k=l .

For ideal BSCs where Pc == 0, {Yn(k)} J:"=1 ' 1 ::; n < N are
available at the FC. It is straightforward to show that in this
case maximum likelihood estimator is a simple detector that
determines the value of the source by voting, as follows:

Note that when N is an even number, E:=l Yn(k) == J¥­
gives no information about x(k), and the bit error probability
remains 0.5. Therefore, in this case we let the estimator in
(1) always reproduce a zero. Estimating x(k) using (1) gives
the bit error probability expressed by (2) (the probability that
majority number of sensors vote for a value that is different
from the actual value of x( k). This is the minimum bit error
probability that the system could achieve using any coding
scheme. The irreducible minimum bit error probability given
by (2) is due to the noisy source observations. For ideal
channels, a simple uncoded transmission and voting will achieve
this minimum. For non-ideal channels, this minimum can be
achieved if there exists a channel code with rate K~M at each
sensor node that asymptotically achieves zero error probability
for the BSC with crossover probability Pc (the channel ca­
pacity theorem requires K~M to be greater than or equal to
1 + pc log Pc + (1 - Pc) log(l - Pc), the capacity of the BSC).

We apply turbo codes for data-gathering WSNs modeled
by the binary CEO problem. A binary source corrupted by
independent binary noises is observed by different sensors. Each
sensor encodes its observation by two parallel concatenated
convolutional codes, punctures parities to achieve the target
rate, and transmits through BSC to the FC. The FC passes the
extrinsic information between the SISO decoders related to each
sensor, and meanwhile delivers extrinsic information received
from SISO decoders of all sensors to two vertical decoder (VD)
units that update extrinsic information by taking correlation into
account. We compare the bit error rate of this scheme with
the bit error rate achieved by the separate decoding scheme.
We also compare the bit error rate achieved by applying turbo
codes with the one achieved by applying convolutional codes
and discuss the results. We should mention that a similar work
on turbo encoding and decoding of correlated sources appreas in
[13], where a correlation decoder is applied between the turbo
decoders to provide updated probabilities to the turbo decoders.
However, this correlation decoder is not the same as the decoder
we propose here, as it addresses a different source model.

The rest of this paper is organized as follows. Section
II presents the system model and definitions. In Section III
we formulate the update rules for L-values in the iterative
joint decoding scheme. Simulation results and discussions are
presented in Section IV. Section V concludes the paper.

II. SYSTEM MODEL

Figure 2 shows the binary CEO model for a data-gathering
WSN. The source is an i.i.d. binary sequence x == {x(k)}~=l'
Pr(x(k) == 0) == Pr(x(k) == 1) == 0.5 where K is the
block length of the source sequence and is called the mes­
sage block length. This symmetric source is monitored by
N sensors. Sensor number n receives a noisy observation
of the source sequence as Yn == {Yn(k)}~= 1 after passing
through a BSC with crossover probability Ps. In other words
for each 1 ::; k ::; K, Yn(k) == xn(k) EB vn(k) where EB
denotes the modula 2 addition and V n (k) is a binary i.i.d.
random variable that takes "1" with probability Ps and "0"

x(k) = { ~
N

L Yn(k) < if
n=l
otherwise

(1)
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Fig. 3. Block diagram of horizontal decoder for sensor number n. VD denotes
vertical decoder.

Vertical Decoding: The ith vertical decoder (i = 1,2)
collects a posteriori L-values D ni for all sensors n = 1, ... , N.
Fix k and let n change from 1 to N. The vertical decoder starts
by calculating initial probabilities:

Pr(Yn(k) = 0) = exp(Dni(k))
1 + exp(Dni(k))'

and
1

Pr(Yn(k) = 1) = (D .(k))·1 + exp na

Therefore, if f tu« (k)) represents the probability mass function
of Yn(k), we have:

where

Then, it estimates the joint probability mass function
f (x (k), u,(k), ...,YN ( k)) as:

N

f(x(k)'Yl(k)""'YN(k)) = ~ap~(l-ps)N-W II f(Yn(k)),
n=l

(4)

(3)

Yn(k) = 1

Yn(k) = 0

l+exp(Dni(k))
{

exp(Dni(k))
l+exp(Dni(k))

f(Yn(k)) =
1

If such channel code exists, the FC can separately decode the
data received from each sensor and then vote to determine the
value of the source. However, in practice, when codes are of
limited block lengths, a joint decoding approach is preferred
and performs substantially better than separate decoding method
(see Section IV). Such joint decoder applies its knowledge of
the correlation between sensors' data, to update the extrinsic
information. In Section III we show how to implement such
joint decoding scheme for sensor networks equipped by turbo
codes.

III. IMPLEMENTATION OF JOINT DECODING FOR TURBO

CODES

N

W = L ((x(k) EB Yn(k)).
n=l

Now, for each n the vertical decoder calculates the marginal
probability mass function:

In (4), the coefficient ! represents the probability of x( k) and
a is a coefficient that normalizes the following summation to
one:

1 1

j(Yn(k)) = (3 x L L L
x(k)=O Yl (k)=O Yn-l (k)=O

1 1

L L f(x(k), Yl(k), ...,YN(k)), (5)
Yn+l(k)=O YN(k)=O

for Yn (k) = 0, 1, respectively. Again, coefficient (3 is used
for normalization. We note that the marginal probability mass
function contains the information about Yn (k) provided by all
other nodes (excluding Yn(k)). Therefore, the extrinsic L-value
is expressed by:

The joint decoding scheme presented here is a connection­
development between coding and data fusion steps. The joint
decoding is performed in two steps. Following the notation
of [14], we call these steps the Horizontal and the Vertical
decoding. In the horizontal decoding, each two SISO decoders
associated with a sensor node exchange their extrinsic informa­
tion. Meanwhile, two separate vertical decoding units collect
extrinsic information from the same SISO decoders of all
sensors (i.e. vertical decoder 1 from all first SISO decoders, and
vertical decoder 2 from all second SISO decoders) and update
them for the next iteration.

Horizontal Decoding: Figure 3 shows the block diagram of
horizontal decoder for sensor number n. For sensor n, SISO
decoder number i, i = 1, 2, receives three vectors of L-values,
Cni received from the channel, B ni received from the vertical
decoder i, and Ani a priori information received from the
SISO decoder connected to it. For initialization, Ani and B ni
are set to zero for i = 1,2. The SISO decoder runs BCJR
algorithm [15] to calculate the a posteriori information D ni , and
expresses the extrinsic information, E ni , by subtracting a priori
L-values from a posteriori L-values. The extrinsic information
is interleaved (deinterleaved) to act as a priori L-values for the
other SISO decoder. E ni is also delivered to the vertical decoder
to extract B ni for the next decoding iteration.

1

L L
x(k)=O y(l,k)=O

1

L f(x(k)'Yl(k)'···'YN(k)) = 1.
y(N,k)=O

1(0)
Bni(k) = log~.

f(l)
(6)
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Fig. 5. Bit error rate achieved by (2000, 1000) convolutional codes for N = 4
sensors and Ps = 0.01.

The vertical decoder repeats the same 1JI0cedure for all 1 <
k ::; K to calculate the vector {Bn i (k)} k=l' and feeds it back
to the SISO decoders.

After running a definite number of horizontal-vertical itera­
tions, each decoder (n == 1, ... ,N) makes a binary decision on
x(k) by looking at D n 2(k), and the final value of x(k) is defined
as the majority of these decisions. Notice that although similar
to separate decoding, x(k) is found by voting, several rounds
of vertical decoding have provided additional information that
increases the reliability of the decision. In Section IV we show
that the joint design of decoding and data fusion leads to
substantial performance gain compared with decoupled designs.

IV. SIMULATION RESULTS

In all simulations we consider systematic recursive convolu­
tional codes with generator polynomials G(D) == (1, 1~b~~2).
For separate and joint decoding of turbo codes, as well as joint
decoding of convolutional codes, the number of iterations is
fixed to 4. The source block length is fixed to K == 1000 bits
and number of sensors is fixed to N == 4. For the case of
convolutional codes, only one SISO decoder represents each
sensor node at the decoder and all these SISO decoders are
connected and exchange their information via a single vertical
decoder. We note that uncoded transmission over the BSC
results in a total crossover probability of Ps(l- Pc) +Pc(l-Ps)
between x(k) and each received bit rn(k). Thus, bit error
probability of this transmission could be found after replacing
Ps in (2) by Ps(l-Pc)+Pc(l-ps). These bit error rate curves are
provided in all figures for comparison. As discussed before, bit
error rate achieved by uncoded transmission for ideal channels
(Pc == 0) indicates the minimum achievable bit error probability
of the system (Equation (2».

Figure 4 shows the bit error rate achieved by separate and
joint decoding of turbo codes, respectively. The number of
sensors is set to N == 4 and the crossover probability between
source and sensors is Ps == 0.01. Separate encoding reaches
the minimum achievable bit error probability (3.0 x 10-4 )

for channels with cross over probability Pc ::; 0.05, while

Fig. 6. Bit error rate achieved by joint decoding for (1800, 1000) turbo and
convolutional codes. N = 4 and Ps = 0.01.
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Fig. 4. Bit error rate achieved by (2000,1000) turbo codes for N = 4 sensors
and Ps = 0.01.

JOInt decoding achieves this rmrumum for all channels with
Pc ::; 0.14. As an example to compare the performance of joint
and separate decoding, assume that a bit error rate of 10-3

is desired. Joint decoding can attain this criterion for channels
with crossover probability of Pc == 0.16 while separate decoding
requires a crossover probability less than 0.08. This means that
joint decoding can tolerate twice more channel errors compared
with the separate decoding.

Figure 5 shows similar results when turbo codes are replaced
by convolutional codes. By comparing the two curves for bit
error rate of 10-3 we observe that joint decoding tolerates 2.4
times more channel errors (Pc == 0.05 for separate decoding and
Pc == 0.12 for joint decoding). Also, comparing the curves for
joint decoding in Fig. 4 and Fig. 5 shows that turbo codes can
keep the BER below 10-3 for all Pc ::; 0.16, while convolutional
codes require Pc 5 0.12. This means that turbo codes can
correct 33% more channel errors. This percentage will increase
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Fig. 7. Bit error rate achieved by joint decoding for (2000, 1000) turbo and
convolutional codes. N = 4 and ps = 0.02.

by increasing the code rate. This is illustrated in Fig. 6, where
(1800, 1000), i.e. rate ~ codes are applied. Turbo codes and
convolutional codes reach bit error rate of 10-3 at Pc = 0.15,
and 0.10 respectively. In other words, turbo codes tolerate 50%
more channel errors (they could correct 1.5 times more channel
errors), while maintaining the same bit error rate.

Finally, Fig. 7 compares the performance of (2000,1000)
turbo and convolutional codes for N = 4 sensors and Ps = 0.02.
The minimum achievable bit error probability is 1.2 x 10-3 .

Turbo codes reach this minimum at Pc = 0.14 whereas con­
volutional codes achieve it for Pc = 0.07. We observe that by
reducing the code rate, both convolutional and turbo codes gain
better error correction properties. However, this gain is more
significant in the case of turbo codes; and therefore the gap
between the two bit error rate curves increases by decreasing
the rate.

v. CONCLUSION

We considered joint design of channel coding and data fusion
steps in data-gathering sensor networks using turbo codes. The
design is based on exploiting the knowledge of correlation
between sensors' data at the fusion center. Two vertical decoders
located at the fusion center, employ this knowledge to update
extrinsic information received from SISO decoders of all sen­
sors. We showed how extrinsic information is passed between
2 x N SISO decoders and the vertical decoders. We evaluated the
performance of joint decoding algorithm for systems modeled
by binary CEO problem, where N sensors observe the same
binary source corrupted by independent binary noises, encode
and transmit their information to the FC through independent
BSCs. Our simulation results show that the joint design of de­
coding and data fusion steps allows for substantial performance
gains over separate decoding and data fusion designs. We also
provided comparisons between the bit error rates achieved by
convolutionally coded and turbo coded systems for different
correlations and rates. The results show that turbo codes are able
to correct up to 1.5 times more channel errors while maintaining
the same bit error rate.
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