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ABSTRACT

An iterative joint decoding algorithm for data gathering wire-
less sensor networks is proposed in [1] where the correlation
between sensors’ data is considered as a global code and iter-
ative decoding is performed by concatenating the global de-
coder with the decoder of error correcting code applied to en-
code sensors observations. We apply this algorithm for sensor
networks with binary CEO model where sensors observe dif-
ferent noisy versions of a single source, located away from
sensors. This calls for employing more powerful error cor-
recting codes, therefore we apply convolutional codes (Ham-
ming codes and single parity check codes are applied in [1]).
We use the concept of iterative horizontal-vertical decoding
for concatenated block codes to formulate the update rules for
L-values for the considered binary CEO model. Our simula-
tions confirm that the iterative joint decoding scheme substan-
tially decreases the bit error rate compared with the separate
decoding scheme, and reaches the minimum achievable dis-
tortion for channels with significantly higher noise levels.

Index Terms— CEO problem, sensor networks, iterative de-
coding, convolutional code.

1. INTRODUCTION

Wireless sensor networks (WSNs) are widely recognized as
one of the most promising emerging technologies in the field
of communications and information technology. New advances
in hardware and wireless network technologies as well as in
low power electronics have reduced the cost, size, and power
of micro-sensors [2]. This enables us to employ distributed
wireless sensing in a wide range of applications [3], includ-
ing environmental monitoring, rescue operations, monitoring
seismic propagation in buildings, health care and medical ap-
plications.

We focus on the application of WSNs in data gathering.
This type of WSN has the same model as the Chief Executive
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Fig. 1. A data gathering wireless sensor network with N = 8
Sensors.

Officer (CEO) problem [4], where a CEO is interested in a
source that cannot be observed directly. N agents make inde-
pendent noisy observations of the source, separately encode
their observations, and then transmit through rate-constrained
channels to a single fusion center (FC) for further processing.
The scenario is shown in Fig. 1. The CEO problem is con-
sidered for discrete case in [4] and for the quadratic Gaussian
casein [5, 6,7, 8, 9].

Each sensor node in a WSN has a limited power supply
which is not rechargeable. Also, it is not easy to service a
large number of sensor nodes in remote, possibly inaccessible
locations. Thus, the key challenge is conserving the energy of
the distributed wireless sensor nodes and maximizing their
lifetime. Accordingly, it is desired to exploit the correlation
between sensors’ data in order to reduce the transmission rate.
In fact, since the bit-rate directly impacts power consumption
at a sensor node, by eliminating the data redundancy and re-
ducing the communication load, we can manage the energy
resources in an optimal manner. Since the sensors are not al-
lowed to communicate, the only way to exploit the correlation
is to design the decoder (located in the FC) to take this corre-
lation into account. Such decoder could alternatively achieve
the same error probability for a smaller transmission rate, and
save energy.

In [1] an iterative joint decoding algorithm is proposed
for data gathering WSNs. The algorithm regards the correla-
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tion between sensors’ data as a global code. The authors in
[1] then show how to design a decoder for this global code.
This decoder is concatenated with the decoder of the error
correcting code that is applied to encode each sensor’s data.
Extrinsic information is passed between decoders, and decod-
ing continues for a definite number of iterations. In [1] such
iterative decoder is applied to data gathering Gaussian sensor
networks where it is shown that this decoding algorithm per-
forms substantially better than a separate decoding scheme in
sense of achieving smaller mean square distortion. The per-
formance is also compared with the performance of a MAP
decoder and is shown to be slightly worse. For MAP decod-
ing, the correlation is considered in the form of joint probabil-
ity distributions. A similar algorithm is proposed in a pioneer
work of [10], where low-density generator matrix (LDGM)
codes are applied to separately encode sensors’ observations.
The receiver uses a graphical model that considers the whole
system as a single graph, and runs belief propagation (BP)
algorithm on this graph to decode the source.Other similar
works appear in [11, 12].

We apply the iterative joint decoding algorithm to binary
sensor networks modeled by a binary CEO problem. In con-
trast to [1] that considers sensors observations as different
correlated sources (e.g. temperature and moisture of a room
that are naturally correlated), we consider all sensors obser-
vations to be originated from a single (binary) source, but
corrupted by independent noises. We use the concept of it-
erative horizontal-vertical decoding [13] to formulate the up-
date rules for the L-values for the global code. Existence of
observation noises calls for applying more powerful error cor-
recting codes at sensor nodes. The reason is that if the sensor
observation is decoded by a definite decoding error probabil-
ity, this error probability increases when the source is being
estimated from this decoded observation. Therefore, in con-
trast to [1] that considers very simple codes, i.e. (7,4) Ham-
ming code and (4, 3) single parity check code, we apply con-
volutional codes to further improve the error correcting capa-
bilities. Since convolutional codes could be implemented by
finite state machines and received sequence can be encoded
and transmitted sequentially with no need for storage space,
convolutional codes are ideal choices for small sensor nodes.

Section 2 presents the system model. In Section 3 we
formulate the update rules for L-values for the iterative joint
decoder. Simulation results and discussions are presented in
Section 4. Section 5 concludes the paper.

2. SYSTEM MODEL

Figure 2 shows the binary CEO model for a WSN. The un-
biased binary source sequence x = {ac(k)},}f:1 , Pr(z(k) =
0) = Pr(z(k) = 1) = 0.5, with message block length of K,
is monitored by /V sensors. Sensor number n receives a noisy
observation of the source sequence as y, = {y(n, k)},If=1
,where y(n,k) = z(n,k) ® v(n, k), where @& denotes the
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Fig. 2. A sensor network with binary CEO model.

modulus 2 summation and v(n, k) is a binary i.i.d. random
variable with Pr(v(n, k) = 1) = p,. Each sensor encodes its
data by adding M parities (systematic coding), and transmits
its coded sequence u,, = {u(n, k)}sz""lM to a fusion center.
The fusion center receives the data of all sensors as a ma-
trix {r(n, k)}f:lM, 1 < n < N and estimates the source as

a sequence {:E(k)}szl. We assume that each sensor is con-
nected to the fusion center by a binary symmetric channel
with crossover probability p.=Pr(r(n,k) # u(n,k)). The
system model is illustrated in Fig. 2. At this point the decoder
has N pieces of information which are all binary sequences.
The decoder must decide how to fuse these N sequences to-
gether. One solution is to 3&parately decode each received
sequence r; = {r(i, k)}kKj1 and then decide based on the
majority of the outputs (voting). Another way is to apply iter-
ative joint decoding (Section 3) to softly fuse the NV pieces of
information.

For ideal channels where p. = 0, i.e., channels with ca-
pacity of 1 bits per channel use, {u(n, k)}kK:"lM ,1<n<N
are available at the fusion center. The optimal estimate in this
ideal case reduces to a voting problem which is expressed as
follows:

s {0 Sy k) < ¥

a(k) = { 1 otherwise M
Estimating (k) using (1) gives a bit error probability of (2)
which is the probability that majority number of sensors vote
for a value that is different from the actual value of z(k). The-
oretically speaking, this is the minimum bit error probability
that can be found when the decoder has direct access to the
observations of the sensors. In fact, this minimum can be
achieved if there exists a channel code with rate I{-FLM ateach
sensor such that it can asymptotically achieve zero error prob-
ability for the BSC with crossover probability p.. However, if
the required power to implement the capacity-achieving chan-
nel code (with probably high encoding and/or decoding com-
plexity) is greater than the power saved due to its coding gain,
it is not an energy-efficient option for WSNs [14, 15, 1]. In
this work, we consider short block length systematic recursive
convolutional codes and evaluate their performance in binary
CEO sensor networks, by applying the iterative joint decod-



Table 1. The schematic of receiving and encoding data by
sensors
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ing algorithm of [1] at the fusion center.

Pr(i(k) # z(k)) =
LNPE - p) ¥ + 2, (2 —p)N
N even
Sz (N)pr(L = po)Vn N odd

)

3. IMPLEMENTATION OF ITERATIVE JOINT
DECODING ALGORITHM FOR BINARY CEO
MODEL

Table 1 shows the schematic of receiving source sequence
{:z:(k)}f=1 by each sensor and encoding it to a sequence
{u(n, k)}kKle. The vectors {r(n, k)}f:lM are received at
the decoder. The decoder sets the log-likelihood values and
performs an iterative decoding by running alternative hori-
zontal and vertical decodings [13]. Table 2 shows the L-values
received from the BSCs. Given a crossover probability p. <
0.5, the reliability value of the channel is L, = logl—;P—c [13].
Therefore, the L-values for the received vectors are set to
{Lc.r(n, k)},lf:lM, 1 < n < N. The L-values for source bits
{:r:(k)},lf=1 are set to zero, indicating that no information is
available for these bits. Also, the extrinsic L-values received
from vertical decoding are initialized as {LL(n, k), =0,
for all n. After setting the L-values, horizontal and vertical
decodings are performed sequentially as follows:

Horizontal Decoding: The BCIR algorithm [16] is per-
formed on the trellis of each convolutional code
(n=1,2,...,N) and the vector of a posteriori L-values
{L~(n, Ic)},cK=1 for each n is obtained. Then the extrinsic L-
values are calculated as

L7 (n,k) = L™ (n,k) — Lo.r(n, k) — LL(n,k).  (3)

The vector of L-values {L; (n,k) + L..r(n, Ic)},i{:1 is used
as a priori values for vertical decoding.

Vertical Decoding: First we calculate initial probabilities
using a priori L-values received from horizontal decoding:

_ o exp(L;(n,k)+ Le.r(n, k))
P k) =0 = Lo B T Lor ()
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Table 2. The L-values received from BSCs

0 -] 0 |
L) [ o] LR | o | Lor(LK 30
L.r(2,1) L..r(2,K) L.r(2,K+ M)
Lo (V1) L.r(N.K) L. (N,K + )
and
1

Priy(n, k) =1) = -— exp(Le (n k) + Ler(n, k)

Therefore, if f(y(n, k)) represents the probability mass func-
tion of y(n, k), then:

exp(L; (n,k)+L.r(n,k)) _
Fly(n, k) = { Treap(Le (nf)+Lor(n k) y(n, k) =0
’ y y(n,k) =1
1+exp(Lg (n,k)+Ler(n,k)) ’
4

Then we estimate a joint probability mass function of
f(@(k),y(1, k), ..., y(N, k)) as:

f(z(k),y(1,k), ... y(N, k) =

1 N
5Py (L=p )N [] fw(n, k) ®)

n=1

where w = Y ((z(k) @ y(n, k)). The coefficient $ rep-
resents the probability of z(k) and « is a coefficient that nor-
malizes the following summation to one:

f(w(k);y(l»k‘)y b y(N’ k)) =1

Q)
Then for each n we calculate the marginal probability mass
function:

1

fammy=px 3 S . %

z(k)=0y(1,k)=0 y(n-1,k)=0

1

>

y(n+1,k)=0

1
o Y F@®)y(LR), .y (N R), (D)
y(N,k)=0

for y(n, k) = 0, 1, respectively. Again, coefficient £ is used
for normalization. Finally, the extrinsic L-value is expressed
by LL(n, k) = log %%. These extrinsic L-values are added
to Lc.r(n, k) to initialize the BCJR algorithm for the subse-
quent horizontal decoding. One decoding iteration includes
the complete decoding of both the horizontal and vertical de-
coding. If a binary decision on y(n, k) is required, such de-
cision can be made by calculating the a posteriori L-values
as

Li(n,k) = Ler(n, k) + LY (n, k) + LT (n, k). (8)



Final Estimation: After performing a definite number of
iterations (e.g. 5 iterations), we calculate the marginal proba-
bilities for z(k) as

1 1
Pr(z(k)=b)= D .. > flby(1,k),..,y(N,k)),
y(L,k)=0 y(N,k)=0 ©

where b = 0, 1, and function f(.) is expressed by (5). Then
we estimate z(k) as

#(k) = { (1) if Pr(z(k) = 0) > Pr(z(k) = 1)

otherwise a0

4. SIMULATION RESULTS

In all simulations we consider systematic recursive convolu-
tional codes with generator polynomials (1, %). For
the case of the iterative joint decoding algorithm, the num-
ber of iterations is fixed to 4. The source block length is
fixed to K = 1000 bits. The crossover probability between
source and sensors is fixed to p, = 0.01. Fig. 3 shows
the bit error rate of the system using two different decoding
methods. The first method separately decodes each vector
{r(n, k)}kK=1 for each n, and then obtains the estimate (k)
from (1). The second method applies the iterative joint de-
coding algorithm. It is observed that iterative joint decod-
ing performs substantially better than the separate decoding.
The minimum achievable bit error probability is found from
(2) to be 3.0 x 1074, Tt is observed from Fig. 3 that the
separate decoding approaches this minimum bit error proba-
bility for channels with p, < 0.01. However, the joint de-
coding method approaches the minimum bit error probability
for all BSCs with p. < 0.05. For comparison, the bit er-
ror probability of an uncoded scheme is also shown in Fig.
3. The uncoded transmission over the BSC results in a to-
tal crossover probability of ps(1 — p.) + pc(1 — ps) between
z(k) and each received bit 7(n, k). The bit error probability
of this transmission could be found after replacing p, in (2)
by ps(1 — pc) + pc(l — ps). While the uncoded transmission
achieves the minimum error probability of (2) only for the
ideal channel (i.e. p. = 0, not shown in Fig. 3), we observe
that coded transmissions could approach this minimum error
probability for values of p, > 0.

Fig. 4 shows the bit error rate achieved by 4 iterations of
joint decoding algorithm, while using N = 4, and N = 6 sen-
sors. As expected, applying N = 6 sensors decreases the bit
error probability. At p. = 0.05 both schemes approach their
minimum achievable bit error probabilities that are 3.0 x 104
and 9.9x 1076, respectively (found from (2)). It is possible to
increase the coding rate at the expense of increasing bit error
rate in order to provide better spectral efficiency. More im-
portantly, increasing the coding rate reduces the transmission
power consumption in sensor nodes and increases the network
lifetime. Figure 5 studies the effect of increasing the coding
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Fig. 3. Bit error rate of a system with N = 4 sensors and
(2000, 1000) convolutional codes, using separate decoding
(Squares) and joint decoding (Triangles).
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Fig. 4. Bit error rate of systems with N = 4 (Squares) and
N = 6 (Circles) sensors. (2000,1000) convolutional codes
are applied.

rate for a system with N = 6 sensors. From M = 1000 gen-
erated parities, 200 of them are punctured to increase the rate
from } to 3. The positions of punctured parities are selected
randomly and are fixed after selection. These position are
know at the decoder, and the decoder sets their corresponding
L-values to zero. It is observed that error correcting capabil-
ity of the code is affected by puncturing. The non punctured
rate % code achieves bit error probability of 10~ for a chan-
nel with p. = 0.095, whereas the punctured code of rate g
reaches the same bit error probability only after decreasing
Dc 10 0.075. At p. = 0.06, the non-punctured code has nearly
reached the minimum error probability (that is 9.9 x 10~°) but
the punctured code gives a higher bit error rate of 4.4 x 10~5.

5. CONCLUSION

We considered a binary wireless sensor network, modeled by
the binary CEO problem. We applied the iterative decoding
algorithm presented in [1] which gives us the ability to softly
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Fig. 5. Bit error rate of a system with N = 6 sensors when a
(2000, 1000) convolutional code (Circles) and a (1800, 1000)
convolutional code (Squares) are applied. The second code is
generated by puncturing 200 parities from the first code.

fuse binary sequences received from different sensors. In con-
trast to [1], in our model all sensors observe noisy versions of
the same source. The already existing noise before transmis-
sion, calls for more powerful channel coding. Therefore, we
applied convolutional codes of message block length 1000.
Our simulation results for different number of sensors and
different transmission rates confirmed that the iterative joint
decoding scheme significantly improves the bit error proba-
bility of binary wireless sensor networks compared with the
separate decoding scheme. Also, the iterative joint decoder
reaches the minimum achievable bit error rate for BSCs with
significantly higher noise levels.
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