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ABSTRACT

A set of nonlinear differential equations are derived from the first principles, namely the Maxwell’s equations
and the material responses to electromagnetic excitations. The derivation retains the mathematical exactitude
down to details. Still in compact and convenient forms, the final equations include the effect of group-velocity
dispersion down to an arbitrary order, and take into account the frequency variations of the optical loss as
well as the transverse modal function. Also established is a new formulation of multi-component nonlinear
differential equations, which is especially suitable for the study of wide-band wavelength-division multiplexed
systems of optical communications. The formulations are applied to discuss the problem of compensating the
optical nonlinearity of fiber transmission lines using optical phase conjugation. Two system configurations are
identified suitable for nonlinearity compensation. One setup is mirror-symmetric and the other translationally
symmetric about the optical phase conjugator, both being in a scaled sense.
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1. INTRODUCTION

Due to the material nonlinear effects, a fiber-optic transmission line is a nonlinear channel. In state-of-the-
art transmission systems, a single-mode optical fiber may carry tens even more wavelength channels. Each
wavelength carries 10Gb/s or higher data rate, and the signal may travel several thousand of kilometers in the
fiber. With such long transmission distance at such high data rate, the optical nonlinearity of the fiber becomes
significant. Indeed, fiber nonlinearity has become one of the major limiting factors in practical transmission
system.1, 2 The theory of nonlinear guided-wave optics, in particular nonlinear fiber optics, has played and
should continue to play an important role in understanding fiber-optic signal transmissions, the generation and
propagation of ultra-fast laser pulses in optical fibers, and fiber Raman amplifiers, to name just a few. The
available formulations in the literature often use a single-component representation of the optical signals, treat
the effect of group-velocity dispersion (GVD) up to the dispersion slope, and usually neglect the variations
of the optical loss, the transverse mode function etc. across the signal frequency band.3, 4 Although these
approximations simplify the equations and offer some convenience, they may have already been or will soon be
broken down by the rapid growth of the signal bandwidth. Indeed, modern transmission systems have already
been carrying several tens of wavelength-division multiplexed (WDM) channels across an optical bandwidth in
excess of 30 nm. Some pioneering systems have even operated with a bandwidth close to 100 nm. With such
a wide bandwidth and so many WDM channels, it is rather inconvenient to use a single-component equation
to describe the dynamics of all signals, and the higher-order GVD effects start to play important roles in the
dynamics of signal propagations, especially the nonlinear interaction among the signals. Recent advancements
in fiber technologies have produced dispersion-compensating fibers (DCFs) that are capable of compensating
simultaneously the dispersion and the slope of transmission fibers, leaving the residual dispersion dominated by
the higher-order derivatives of GVD.5–10

Here we shall derive a set of nonlinear differential equations from the first principles, namely the Maxwell’s
equations and the material responses to electromagnetic excitations. The derivation retains the mathematical
exactitude down to details. Each approximation is justified and the scope of its applicability is discussed. Still in
compact and convenient forms, the final equations include the effect of GVD down to an arbitrary order, and take
into account the frequency variations of the optical loss as well as the transverse modal function. Also established
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is a new formulation of multi-component nonlinear differential equations, in which the total electromagnetic field
is represented as a sum of signals with different center frequencies. The multi-component formulation is especially
suitable for the study of wide-band wavelength-division multiplexed systems of optical communications. We then
apply the formulations to discuss the problem of compensating the optical nonlinearity of fiber transmission lines,
either by themselves or by specialty fibers, with the help of (an) optical phase conjugation (conjugator) (OPC).
Two system configurations with distinct symmetric properties are identified suitable for the compensation of
fiber nonlinearity in optical transmission lines. In one setup, two fiber lines are arranged mirror-symmetric about
the OPC to compensate each other’s nonlinearity, while in the other setup, the two fiber lines are configured
translationally symmetric about the OPC. In either case, the symmetry is in a scaled sense, and refers to the
space variations of the signal power and the fiber parameters such as dispersion, dispersion slope, and nonlinear
coefficients.

2. DERIVATION OF THE NONLINEAR SCHRÖDINGER EQUATIONS

This section should derive the nonlinear Schrödinger equations, which serve as the theoretical basis of nonlinear
fiber optics. In dielectric optical waveguides, e.g. silica glass fibers, there is no source of electric charge, nor
source of current, that is able to excite electromagnetic (EM) waves at the optical frequency. The magnetic
response of most dielectrics is negligible at optical frequencies. The optics of dielectric waveguides is governed
by Maxwell’s equations,11

∇× E = −µ0
∂H
∂t
, (1)

∇× H = ε0
∂E
∂t

+
∂P
∂t
, (2)

∇ · (ε0E + P) = 0, (3)
∇ · H = 0, (4)

and the material equation,3, 4

P(r, t) = ε0

∫
χ(1)(r, s)E(r, t− s)ds

+ ε0

∫
χ(3)(r, t1, t2, t3)

...E(r, t− t1)E(r, t− t2)E(r, t− t3)dt1dt2dt3, (5)

where χ(1) and χ(3) are the linear and the third-order nonlinear susceptibilities of the dielectric material respec-
tively. Although Maxwell’s equations describe the optical phenomena with the highest accuracy, they seem to
be rather complicated when directly applied to optical waveguides, which usually consist of regions with differ-
ent dielectric properties. Within each region, however, the material is often uniform and isotropic, so that the
vector P is always proportional and parallel to E, if neglecting the nonlinear polarization for the moment. Then
equation (3) is reduced to ∇ · E = 0. By applying ∇× to (1), using (2) and the identity,

∇×∇× E = ∇(∇ · E) −∇2E = −∇2E, (6)

it is obtained,

∇2E(r, t) =
1
c2
∂2

∂t2
E(r, t) + µ0

∂2

∂t2
P, (7)

with 1/c2 = ε0µ0. Both χ(1) and χ(3) may be complex quantities. The real part of χ(1) represents the position-
and frequency-dependent dielectric constant, while the imaginary part reflects the optical loss or gain in the
materials, which may be regarded as frequency-independent, as the total signal bandwidth W is usually much
smaller than the center optical frequency ω0 of the band. The imaginary part of χ(3) represents the two-photon
absorption effect, which is negligible in fibers of silica glass. The real part of χ(3) comes from two contributions,
Re[χ(3)] = χ

(3)
K + χ

(3)
R , where χ(3)

K is responsible for the optical Kerr effect, which may be regarded as an
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instantaneous one, while χ(3)
R is tied to the Raman scattering effect, which is a time-delayed process.3, 4 So the

material equation (5) may be simplified as,

P(r, t) = ε0

∫
Re[χ(1)(r, s)]E(r, t− s)ds+ iε0Im[χ(1)(r)]E(r, t) +

ε0χ
(3)
K (r)

...E(r, t)E(r, t)E(r, t) + ε0

∫
χ

(3)
R (r, s)

...E(r, t− s)E(r, t− s)E(r, t)ds. (8)

Now the guided-wave optics is described fairly accurately by equations (7) and (8), in addition to the proper
boundary conditions11 connecting the fields in different dielectric materials. But there is still too much complex-
ity, due to the vectorial nature of the EM field and the involved boundary conditions. Fortunately, optical fibers
are designed to guide a few discrete modes, even just one mode, and the difference in the dielectric constant
is small between the core and the cladding, which makes the guided modes very close to linearly polarized.12

In most fibers, the optical birefringence is either vanishingly weak to avoid the effect of PMD, or sufficiently
strong to render the fiber polarization maintaining. For mathematical simplicity, it is assumed that all signals
are co-linearly polarized when entering an optical fiber, and coupled into one polarization eigen state when the
fiber is polarization maintaining. In case the signals are not co-linearly polarized, the mathematical description
should be slightly modified to deal with the complication. However, the same physics remains to govern the
nonlinear signal propagation in optical fibers, and still valid are most of the conclusions in the present proposal.
With the linear polarization representation E(r, t) = E(r, t)e1, equations (7) and (8) are simplified and combined
as,

∇2E − 1
c2
∂2E

∂t2
− 1
c2
∂2

∂t2

∫
Re[χ(1)(s)]E(t− s)ds =

i

c2
Im[χ(1)]

∂2

∂t2
E +

1
c2
χ

(3)
K

∂2

∂t2
E3 +

1
c2
∂2

∂t2

∫
χ

(3)
R (s)E2(t− s)E(t)ds. (9)

When the total signal bandwidth W is not much more than a few THz, it satisfies the condition W � ω0,
as ω0 ≈ 200 THz. The frequency dependence of the transverse modal function may be neglected, so that a trial
solution,

E(r, t) = Re[F (x, y)A(z, t) exp(iβ0z − iω0t)], (10)

with β0 being the optical propagation constant at ω0, may be substituted into (9) to derive a differential equation
for the envelope function A(z, t). Since the fast variation is absorbed by the factor exp(iβ0z − iω0t), the signal
envelope A(z, t) is expected to be slow-varying in both z and t. The transverse modal function F (x, y) is
determined by substituting F (x, y)A(z, ω − ω0) exp(iβ0z) into the Fourier transform of (9) with the right side
set to zero. F (x, y) is found to solve the eigen-value equation,(

∂2

∂x2
+

∂2

∂y2

)
F (x, y) +

ω2

c2
F (x, y) +

ω2

c2
Re[χ(1)(x, y, ω)]F (x, y) = β2(ω)F (x, y). (11)

Note that the eigen-value β2 is ω-dependent, which may be expanded into Taylor series,

β2(ω) = β2
0 + 2β0

+∞∑
k=1

βk

k!
(ω − ω0)k, with βk

def=
1

2β0

dkβ2(ω)
dωk

∣∣∣∣
ω=ω0

. (12)

When transformed back into the time domain, equation (11) leads to,

∂2E

∂x2
+
∂2E

∂y2
− 1
c2
∂2E

∂t2
− 1
c2
∂2

∂t2

∫
Re[χ(1)(s)]E(t− s)ds =

β2
0E + 2β0F (x, y) exp(iβ0z − iω0t)BA(z, t), (13)

where B is a differential operator defined as,

B
def=

+∞∑
k=1

βk

k!

(
i
∂

∂t

)k

. (14)
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Substituting (10) and (13) into equation (9) in full, and multiplying both sides by F ∗(x, y) then integrating over
the transverse plane, it is obtained the nonlinear Schrödinger equation (NLSE), which governs the propagation
dynamics of the signal envelope in optical fibers,

∂A

∂z
− iBA+

α

2
A = iγ|A|2A+ i(g ⊗ |A|2)A, (15)

where

α
def=

ω2
0

β0c2

∫
Im[χ(1)(x, y)]|F (x, y)|2dxdy, (16)

γ
def=

3ω2
0

8β0c2

∫
χ

(3)
K (x, y)|F (x, y)|4dxdy, (17)

g(s) def=
ω2

0

4β0c2

∫
χ

(3)
R (x, y, s)|F (x, y)|4dxdy, (18)

assuming that F (x, y) is normalized, and ⊗ denotes the convolution operator such that,

[
g ⊗ |A|2] (z, t) def=

∫
g(s)|A(z, t− s)|2ds. (19)

In deriving equation (15), nonlinear products out of the signal band around ω0, and the Raman term involving
A2(z, t − s)A∗(z, t), are dropped because the corresponding nonlinear processes are prevented by large phase-
mismatches, the term ∂2A/∂z2 is neglected in view of the slow-varying nature of A(z, t) in z, also neglected
are terms involving the time-derivatives of A(z, t) multiplied by Im[χ(1)], χ(3)

K , or χ(3)
R , hence the name slow-

varying envelope approximation. A long transmission link may use fibers of different types. Sometimes the
fiber parameters may vary along a single piece of waveguide. So the quantities (B, α, γ, g) are z-dependent in
general. However, the corresponding derivatives with respect to z may be neglected, as the z-dependence is
usually step-wise, or extremely slow if continuous. The NLSE reads,

∂A

∂z
− iB(z)A+

α(z)
2
A = iγ(z)|A|2A+ i

[
g(z) ⊗ |A|2]A, (20)

in the general version. After a frame transformation (z, t) → (
z, t+

∫ z
β1(ζ)dζ

)
, the NLSE takes a simpler form

in the retarded frame,4

∂A

∂z
− iD(z)A+

α(z)
2
A = iγ(z)|A|2A+ i

[
g(z) ⊗ |A|2]A, (21)

where

D(z) def=
+∞∑
k=2

βk(z)
k!

(
i
∂

∂t

)k

. (22)

When the bandwidth of the optical signals becomes too large, it may violate the ω-independent assumptions
for the transverse modal function F (x, y) and the loss or gain coefficient Im[χ(1)]. However, the huge bandwidth
is usually shared by many WDM channels, each of which, labelled by n ∈ Z, is narrow-band around its own
center frequency ωn. Within each WDM channel, the transverse modal function Fn(x, y) and the loss or gain
coefficient Im[χ(1)

n ], both subscripted by n, are regarded as frequency-independent and valued at ωn. So the trial
solution would be,

E(r, t) = Re
∑

n

Fn(x, y, z)An(z, t) exp
[
i

∫ z

pn0(ζ)dζ − iωnt

]
, (23)

where pn0(z)
def= β(z, ωn) is the optical propagation constant at frequency ωn and position z, An is naturally

the slow-varying envelope of the nth channel. The transverse modes Fn(x, y), n ∈ Z, are determined by the
eigen-value equations,(

∂2

∂x2
+

∂2

∂y2

)
Fn(x, y) +

ω2
n

c2
Fn(x, y) +

ω2
n

c2
Re[χ(1)(x, y, ωn)]Fn(x, y) = β2(ω)Fn(x, y), ∀n ∈ Z, (24)
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whose time-domain equivalents are,

∂2En

∂x2
+
∂2En

∂y2
− 1
c2
∂2En

∂t2
− 1
c2
∂2

∂t2

∫
Re[χ(1)(s)]En(t− s)ds = p2n0En

+ 2pn0Fn(x, y) exp
[
i

∫ z

pn0(ζ)dζ − iωnt

]
BnAn(z, t), ∀n ∈ Z, (25)

where

En(r, t) = Fn(x, y, z)An(z, t) exp
[
i

∫ z

pn0(ζ)dζ − iωnt

]
, ∀n ∈ Z, (26)

and

Bn(z) def=
+∞∑
k=1

pnk(z)
k!

(
i
∂

∂t

)k

, with pnk(z) def=
1

2pn0(z)
∂kβ2(z, ω)

∂ωk

∣∣∣∣
ω=ωn

, ∀k ≥ 1, ∀n ∈ Z. (27)

Substituting (23) and (25) into (9), projecting the field into individual transverse modes Fn(x, y), n ∈ Z, and
similarly, dropping the nonlinear products suffering from large phase-mismatches, neglecting ∂2A/∂z2 and the
terms involving the time-derivatives of A(z, t) multiplied by Im[χ(1)], χ(3)

K , or χ(3)
R , disregarding the z-derivatives

of the fiber parameters and Fn, ∀n ∈ Z, a group of multi-component NLSEs is obtained,

∂An

∂z
− iBn(z)An +

αn(z)
2

An = i
∑

k

∑
l

γkln(z)AkAlA
∗
m exp[iθkln(z)]

−
∑

k

∑
l

gkln(z)AkAlA
∗
m exp[iθkln(z)], ∀n ∈ Z, (28)

where m is determined by the condition ωm = ωk + ωl − ωn, and,

αn(z) def=
ω2

n

pn0(z)c2

∫
Im[χ(1)

n (r)]|Fn(x, y)|2dxdy, (29)

γkln(z) def=
ω2

n

8pn0(z)c2

∫
[3χ(3)

K (r) + 2Gr(r, ωn − ωk)]FkFlF
∗
mF

∗
ndxdy, (30)

gkln(z) def=
ω2

n

4pn0(z)c2

∫
Gi(r, ωn − ωk)FkFlF

∗
mF

∗
ndxdy, (31)

Gr(r, ω) + iGi(r, ω) def=
∫
χ

(3)
R (r, t) exp(ωs)dt, both Gr and Gi are real valued, (32)

θkln(z) def=
∫ z

[pk0(ζ) + pl0(ζ) − pm0(ζ) − pn0(ζ)]dζ. (33)

As the Fourier transform of χ(3)
R (t), Gr(ω) + iGi(ω) is basically the Raman gain spectrum. Because χ(3)

R is real
valued, Gr and Gi are even and odd functions of ω respectively, namely, Gr(−ω) = Gr(ω), Gi(−ω) = −Gi(ω).
By a change of variables (z, t) → (

z, t+
∫ z
p01(ζ)dζ

)
, (28) may be rewritten as,

∂An

∂z
− iDn(z)An +

αn(z)
2

An = i
∑

k

∑
l

γkln(z)AkAlA
∗
m exp[iθkln(z)]

−
∑

k

∑
l

gkln(z)AkAlA
∗
m exp[iθkln(z)], ∀n ∈ Z, (34)

with

Dn(z) def=
+∞∑
k=1

pnk(z)
k!

(
i
∂

∂t

)k

− p01(z)
(
i
∂

∂t

)
, ∀n ∈ Z. (35)

After some tedious mathematical derivations, it is rather satisfying to see that the complicated phenomena
of group-velocity dispersion and nonlinear interactions among optical signals are fully captured by the NLSEs
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(21) and (34) in their simple and appealing forms. Nevertheless, it is beneficial to highlight the theoretical model
and analytical tools by recapping the assumptions and mathematical approximations being made in the above
derivations. Such highlight should help to identify the applicability of the NLSEs as well as their limitations.

Assumptions

1. First of all, the optical field is believed to obey Maxwell’s equations (1 - 4).

2. The waveguide material is assumed to display third-order nonlinearity, with the electrical response given
by (5).

3. The waveguide material is step-wise uniform and isotropic. Namely, the waveguide consists of domains of
uniform and isotropic materials, such that the polarization P (linear response) is always a scalar constant
times the electrical field E within each domain.

4. The third-order nonlinearity consists of an instantaneous (Kerr) response and a time-delayed (Raman)
scattering effect.

5. All signals are assumed co-linearly polarized when entering an optical fiber, and coupled into one polariza-
tion eigen state when the fiber is polarization maintaining.

6. The fiber parameters may be z-dependent, but their derivatives with respect to z are always negligible.

These assumptions are responsible for distilling the first-principle equations (1 - 4) and the material property
(5) into the single scalar equation (9). Then the following approximations have been made in order to derive the
single-component NLSE (21):

Approximations for the single-component NLSE

1. The optical loss or gain in the materials is regarded as frequency-independent.

2. The two-photon absorption effect is neglected in fibers of silica glass.

3. The frequency dependence is neglected for the transverse modal function.

4. The guided modes are treated as linearly polarized.

5. Nonlinear products out of the signal band are neglected.

6. The Raman term involving A2(z, t− s)A∗(z, t) is dropped because of a large phase-mismatch.

7. The term ∂2A/∂z2 is neglected in view of the slow-varying nature of A(z, t) in z.

8. Also neglected are terms involving the time-derivatives of A(z, t) multiplied by Im[χ(1)], χ(3)
K , or χ(3)

R .

The above approximations 1 and 3 are good when the total optical bandwidth W is less than or on the order
of a few THz. For systems with an optical bandwidth well exceeding the THz bandwidth limit, a channelized
representation (23) may be used for the optical signals, and the following approximations may be made to derive
a multi-component NLSE (34):

Approximations for the multi-component NLSE

1. The optical loss or gain in the materials may vary for different channels, however they are treated as
frequency-independent within each channel.

2. The two-photon absorption effect is again neglected in fibers of silica glass.

3. The transverse modal function may depend on the center frequency of the channels, however no frequency
dependence is considered within each channel.
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4. The guided modes are treated again as linearly polarized.

5. Nonlinear products out of the total signal band are neglected.

6. The Raman terms involving A2
m(z, t− s)A∗

n(z, t), ∀m,n ∈ Z are dropped due to large phase-mismatches.

7. The terms ∂2An/∂z
2, ∀n ∈ Z, are neglected in view of the slow-varying nature of An(z, t) in z.

8. Also neglected are terms involving the time-derivatives of An(z, t), ∀n ∈ Z, multiplied by Im[χ(1)], χ(3)
K , or

χ
(3)
R .

3. APPLICATIONS: NONLINEARITY COMPENSATION USING OPC

It is known before that the nonlinearity of one fiber line may be compensated by that of another with the help
of optical phase conjugation (OPC). However, all previous proposals and demonstrations13–17 work partially in
fighting the fiber nonlinearity. They either are specialized to only one aspect of the nonlinear effects, or fail to
work in the presence of dispersion slope or higher order dispersion effects. In,13 it is proposed that OPC may
be employed in the middle of a long transmission line, not only to compensate the fiber dispersion, but also
to cancel the integrated SPM in the two parts of the transmission line. Then,14 among others, demonstrates
experimentally the compensation of dispersion and integrated SPM using OPC. However, the fiber nonlinearity is
distributive in nature, due to the interplay between the fiber dispersion and the Kerr nonlinearity. Cancelling the
integrated SPM merely compensates the single-channel nonlinearity in the sense of path average. The removal of
such path-averaged nonlinearity represents a very limited improvement. In reference,15 a distributive nonlinear
compensator is proposed using a specially designed fiber consisting of many segments. The method achieves
better suppression to the SPM impairments, but it takes no account of the effect of higher-order dispersions, in
particular the dispersion slope. Consequently, the method would not work with wide-band systems, e.g. high-
capacity WDM systems and optical time-division multiplexed (OTDM) systems at very high-speed. Moreover,
the distributive nonlinear compensator is difficult to fabricate, as it requires many fiber segments spliced together
to approximate the distributive dispersion and nonlinearity in the transmission fiber. Reference16 suggests to
compensate the SRS effect using spectral inversion, but again, up to the path average. The distributive nature
of fiber nonlinearity defies once more such scheme of path-averaged compensation. Indeed, the proposed method
of SRS compensation is severely limited by the pulse walk-off under an asymmetric profile of signal power about
the spectral inverter.18 Finally, the experimental demonstration reported in17 achieves probably the best results
that represent the state-of-the-art. The experiment tries to make a fiber line symmetric about the point of OPC.
In particular, it uses backward Raman pumping to approximate a symmetric power profile. The paper reported
evidences of suppressed FWM, SPM, and XPM individually, and with a narrow system bandwidth. However,
the Raman pumped fiber is the same as the transmission fiber, which is often too long for the Raman pump
to maintain a constant gain. In other words, it is difficult to achieve a symmetric power profile. Furthermore,
higher-order dispersions are not compensated by OPC, which could turn into a significant limitation in wide-band
systems.

Using the mathematical formulations established above, we shall discuss nonlinearity compensation using
two types of fiber arrangements with respect to the OPC, as shown in Fig.1. In one type of arrangement, the
fiber parameters and the signal intensity are in scaled mirror symmetry about the OPC. While the other type is
characterized by scaled translational symmetry. We argue that not only the dispersion, but also the slope and
even higher-order dispersions should be carefully chosen, in order for one fiber to compensate the nonlinearity of
the other, across a wide optical bandwidth containing many WDM channels. We also emphasize the important
notions of scaled nonlinearity and scaled symmetry. Scaled nonlinearities and symmetries enable two fibers with
a wide range of parameters to compensate each other’s nonlinearity, as long as their parameters satisfy a set
of proportional rules. In particular, a short piece of specialty fiber with very high dispersion may be used to
compensate both the dispersion and the nonlinearity of a long transmission fiber. The dispersion, dispersion slope
or higher order-dispersions are set in proportion to the parameters of the transmission fiber, and the specialty
fiber may be erbium-doped or Raman pumped to have a gain proportional to the loss of the transmission fiber. In
a mirror-symmetric setup, such specialty fibers may perfectly linearize fiber transmission lines. Besides practical
applications in fiber transmission systems, the method of scaling nonlinearity and nonlinear compensation has a
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deep implication to a fundamental question in information theory. That is, fiber nonlinearity does not necessarily
impose a limit to the channel capacity. In practice, there could be errors in scaling the fiber parameters,
so that the nonlinear compensation may not be perfect. Nevertheless, excellent performance would still be
achieved by choosing the parameters carefully according to the scaling rules. The possibility of nonlinearity
compensation between two translationally symmetric fiber lines is the first of such discovery as far as we are
aware. It is also a rather interesting scheme, in that the two fibers do not have to have opposite gain/loss
coefficients: a lossy waveguide can be used to compensate a lossy transmission fiber, or the two fibers can be
both amplifying. Although the translational setup is only capable of compensating weak nonlinearity up to the
first-order perturbation, it may find wide applications in practical transmission systems, especially long-distance
ones, where the nonlinearity of each fiber span is indeed only a perturbation, but the accumulation of nonlinearity
along the distance can significantly distort the signals.

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

signal intensity

input outputOPC
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
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Figure 1. Two types of fiber arrangements for nonlinearity compensation with OPC: mirror-symmetric (left) and trans-

lationally symmetric (right).

A mirror-symmetric link may consist of a fiber line on the left stretching from z = −L/R to z = 0, L > 0,
R > 0, followed by an OPC, then a fiber line on the right stretching from z = 0 to z = L. The two fiber
lines may carry wavelength-division multiplexed (WDM) signals

∑
nAn(z, t) exp

[
i
∫ z
β(ζ, ωn)dζ − iωnt

]
and∑

nA
′
n(z, t) exp

[
i
∫ z
β′(ζ, ω′

n)dζ − iω′
nt

]
respectively, where ∀n ∈ Z, ωn and ω′

n are the center frequencies of
the WDM channels, ω0 is not necessarily equal to ω′

0, but ωn − ω0 = ω′
0 − ω′

−n, ∀n ∈ Z, An and A′
n are the

slow-varying envelopes, while β(z, ω) and β′(z, ω) are the z-dependent propagation constants. Being neglected is
the frequency dependence of the transverse modal function. For mathematical simplicity, all optical signals are
assumed co-linearly polarized in the fibers, in which the random PMD effect is always negligible. The dynamics
of signal propagation in the two fiber lines is governed by two groups of coupled partial differential equations
respectively,

∂An

∂z
− iDn(z)An +

αn(z)
2

An = i
∑

k

∑
l

γkln(z)AkAlA
∗
m exp[iθkln(z)]

−
∑

k

∑
l

gkln(z)AkAlA
∗
m exp[iθkln(z)], ∀n ∈ Z, (36)

∂A′
n

∂z
− iD′

n(z)A′
n +

α′
n(z)
2

A′
n = i

∑
k

∑
l

γ′kln(z)A′
kA

′
lA

′∗
m exp[iθ′kln(z)]

−
∑

k

∑
l

g′kln(z)A′
kA

′
lA

′∗
m exp[iθkln(z)], ∀n ∈ Z, (37)

∀n ∈ Z, where for the first fiber line, αn is the attenuation coefficient around ωn, γkln is the Kerr nonlinear
coefficient, gkln is the Raman coupling coefficient among the channels, θkln(z) def=

∫ z[β(ζ, ωk) + β(ζ, ωl) −
β(ζ, ωm)− β(ζ, ωn)]dζ is the phase-mismatch among the mixing waves, m is determined by the condition ωm =
ωk + ωl − ωn, and the functional operator Dn is defined as in (35). The parameters α′

n, γ′kln, g′kln, θ′kln and the
operators D′

n(z) are similarly defined for the second fiber line. It is an easy exercise to show that the complex
conjugate of (36) reduce to (37), when the parameters satisfy the following rules of correspondence,

pn1(−z) − p01(−z) = −R [
p′−n,1(Rz) − p′01(Rz)

]
, ∀n ∈ Z, (38)

pnk(−z) = (−1)kRp′−n,k(Rz), ∀n ∈ Z, k ≥ 2, (39)
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αn(−z) = −Rα′
−n(Rz), ∀n ∈ Z, (40)

γkln(−z) = Rγ′−k,−l,−n(Rz)|C|−2, ∀k, l, n ∈ Z, (41)

gkln(−z) = −Rg′−k,−l,−n(Rz)|C|−2, ∀k, l, n ∈ Z, (42)

∀z ∈ [0, L/R], C = 0 being a constant, and the envelope functions are related as An(−z, t) = CA′∗
−n(Rz, t),

∀n ∈ Z. Physically, it says that the two fiber lines compensate each other for dispersion and nonlinearity.
Optical signals An(−L/R, t), n ∈ Z, entering the first fiber line may be dispersed and nonlinearly distorted to
become An(0, t), n ∈ Z, which are converted into A′

n(0, t) = A∗
−n(0, t)/C∗, n ∈ Z, by the OPC. The second fiber

line will then propagate the optical signals in a reversed manner with respect to the first. The final outputs
signals A′

n(L, t) = A∗
−n(−L/R, t)/C∗, n ∈ Z, are exact replicas of the initial signals up to complex conjugation.

It is noted that parts of one fiber line would amplify light in correspondence to the attenuation in parts of the
other, and vice versa. A specialty fiber may be chosen with parameters satisfying equations (38,39,41,42) to be
the scaled mirror image of a transmission fiber which usually attenuates light. At the same time, erbium doping
or Raman pumping should be employed to obtain the proper gain specified by equation (40).

A link with translational symmetry could be constructed to cancel weak nonlinearities up to the first order
perturbation. Consider two fiber lines with opposite Kerr and Raman nonlinear coefficients but identical linear
parameters. If (36) with z ∈ [−L, 0] describe the signal propagation in one fiber line, then the signal dynamics
in the other would be governed by similar equations with negative γ and g coefficients,

∂Bn

∂z
− iDn(z − L)Bn +

αn(z − L)
2

Bn = −i
∑

k

∑
l

γkln(z − L)BkBlB
∗
m exp[iθkln(z − L)]

+
∑

k

∑
l

gkln(z − L)BkBlB
∗
m exp[iθkln(z − L)], ∀n ∈ Z, 0 ≤ z ≤ L, (43)

which take the input Bn(0, t), n ∈ Z and give the output Bn(L, t), n ∈ Z. When the signal intensity is not
very high, so that the nonlinearity is weak and treated with perturbation theory, the output from each fiber line
is a linearly dispersed version of the input, plus nonlinear distortions expanded in power series of the γ and g
coefficients. By neglecting the higher order powers and keeping only the terms linear in γ or g, it can be seen
that the two fiber lines induce opposite nonlinear distortions to otherwise the same, linearly dispersed signals.
If the overall dispersion of each line is compensated to zero and the signal loss is made up by a linear optical
amplifier, then the two lines in cascade would comprise a transmission line with fiber nonlinearity annihilated
up to the first order perturbation. The problem is that an optical fiber with negative nonlinear coefficients does
not exist naturally. Fortunately, it can be simulated by a regular fiber with the help of OPC. Take a regular
fiber with parameters (β′, α′, γ′, g′) that satisfy,

p′n1(z) − p′01(z) = R [p−n,1(Rz − L) − p01(Rz − L)] , ∀n ∈ Z, (44)
p′nk(z) = (−1)k−1Rp−n,k(Rz − L), ∀n ∈ Z, k ≥ 2, (45)
α′

n(z) = Rα−n(Rz − L), ∀n ∈ Z, (46)
γ′kln(z) = Rγ−k,−l,−n(Rz − L)|C|−2, ∀k, l, n ∈ Z, (47)
g′kln(z) = −Rg−k,−l,−n(Rz − L)|C|−2, ∀k, l, n ∈ Z, (48)

∀z ∈ [0, L/R]. The signal propagation in the regular fiber is then governed by,

∂B′
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n(z)B′
n +

α′
n(z)
2

B′
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−
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∑
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g′kln(z)B′
kB

′
lB

′∗
m exp[iθ′kln(z)], ∀n ∈ Z, 0 ≤ z ≤ L/R, (49)

which are solved by B′
n(z, t) = CB∗

−n(Rz, t), n ∈ Z, and turn the input B′
n(0, t) = CB∗

−n(0, t), n ∈ Z, into the
output B′

n(L/R, t) = CB∗
−n(L, t), n ∈ Z. The regular fiber equipped with OPCs at its two ends takes the input

Bn(0, t), n ∈ Z and gives the output Bn(L, t), n ∈ Z. In other words, the combination of a regular fiber and
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OPCs fulfils the function of the fictitious fiber with negative nonlinearity. The OPC at the output end of the
regular fiber may be omitted in practice, as most applications would not differentiate between a signal and its
conjugate.

It is interesting to compare the two methods of nonlinearity compensation. While a translational setup
cancels weak nonlinearities only up to the first-order perturbation, a mirror configuration could fully compensate
nonlinearities beyond perturbation. Between two fiber segments compensating each other, the translational
symmetry requires opposite signs for the dispersion and the same sign for the gain/loss coefficient, and the
mirror symmetry does the contrary. It is noted that each fiber line on one side of the OPC is not necessarily one
fiber span, and the signal intensity does not have to evolve monotonically either. Both methods work fine when
each side of the OPC consists of multiple fiber spans with optical amplifiers boosting the signal power, although
the added noise makes perfect nonlinearity compensation impossible.

4. SIMULATIONS

Using a commercial software, computer simulations have been carried out to test the proposed methods of
nonlinearity compensation. For a mirror setup, as shown on the left of Fig.1, the simulated link consists of a
specialty fiber, an OPC, and a transmission fiber that is of the negative nonzero dispersion-shifted type, 200 km
long, with loss coefficient α = 0.2 dB/km, dispersion D = −8 ps/nm/km, dispersion slope S = 0.08 ps/nm2/km,
effective mode area Aeff = 50 µm2, Kerr and Raman coefficients that are typical of silica glass. The specialty fiber
is a dispersion compensating fiber of the same material, but with parameters (α′,D′, S′) = 20× (−α,D,−S) and
A′

eff = 12.5 µm2. The nonlinearity of the specialty fiber can be switched on and off. ASE noise is added at the two
ends of the link. The input consists of four WDM channels at 100 GHz spacing, co-polarized, all RZ modulated
at 10 Gb/s with 33% duty. The power of all optical pulses is peaked at 100 mW when entering the transmission
fiber. Fig.2 shows the received signals without and with nonlinearity in the specialty fiber respectively. The eye
diagram on the left shows the overwhelming nonlinear distortion in the received signal, when the specialty fiber
has no nonlinearity, but only pre-compensates the dispersion of the transmission fiber. When the nonlinearity of
the specity fiber is turned on, the eye diagram on the right shows no nonlinear degradation, but only the effect
of ASE noise, which demonstrates clearly the compensation of optical nonlinearity.

Figure 2. Received signals at the end of a simulated link. Left: only the dispersion of the transmission fiber is pre-

compensated by the specialty fiber. Right: both dispersion and nonlinearity are pre-compensated.

The test system in translational symmetry is constructed with five 100-km spans on each side of the OPC
to reach a total transmission distance of 1000 km. On the left side of the OPC, each span consists of 100 km
transmission fiber with parameters α = 0.2 dB/km, D = 16 ps/nm/km, S = 0.055 ps/nm2/km, and Aeff = 80
µm2, then a stage of EDFA with 20 dB gain and 5 dB noise figure, followed by 20 km DCF with parameters
(5α,−5D,−5S,Aeff/5), and another stage of EDFA, again 20 dB gain, but negligible noise. In practice, the two
stages may belong to just one EDFA. Both the transmission fiber and the DCF have the same nonlinear index
n2 = 2.6 × 10−20 m2/W. On the right side of the OPC, the same fibers and EDFAs are used, but the DCF is
placed before the transmission fiber in each span. This is to make the two sides translationally symmetric about
the OPC, approximately, not exactly, because the dispersion slopes of the transmission fiber and the DCF do not
satisfy the scaling rules. So the success of such setup would demonstrate some tolerance to the scaling rules. The
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input are four 40 Gb/s WDM channels spaced by 200GHz, each one is RZ-modulated with 33% duty cycle. The
power of the optical peaks at 20 mW. The left eye diagram of Fig.3 displays the signal detected in the middle of
the link, just before the OPC, and the right eye diagram shows the signal received at the end of the link. Clearly,
the accumulated nonlinearity has already distorted the signal by the middle of the link. However, with the help
of the OPC, the fiber spans in the rest of the link are able to undo the distortion caused by the previous spans.
We have simulated two more cases for comparison, to further confirm the effect of nonlinearity compensation
by the use of OPC and the translational symmetry. In one case, the same transmission link is used except that
the OPC is removed. The received signal is shown on the left of Fig.4. In the other case, the OPC is still on,
but the fiber spans on the right side of the OPC are identical to those on the left side. In particular, all spans
have the transmission fiber placed before the DCF. The right diagram of Fig.4 shows almost no suppression of
nonlinearity.

Figure 3. Received signals at the middle (left) and the end (right) of a simulated link.

Figure 4. Received signals at the end of the link, with either the OPC removed (left), or the spans on the two sides of

the OPC are identical (right).
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