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ABSTRACT

It is noted that the fiber propagation loss is a random process along the length of propagation. The stochastic
nature of the loss process induces a random fluctuation to the energy of the optical signals, which, as an extra
source of noise, could become comparable to the amplified-spontaneous-emission noise of optical amplifiers.
The optical noise in random loss/gain has a quantum origin, as a manifestation of the corpuscular nature of
electromagnetic radiation. This paper adopts the Schrodinger representation, and uses a density matrix in
the basis of photon number states to describe the optical signals and their interaction with the environment of
loss/gain media. When the environmental degrees of freedom are traced out, a reduced density matrix is obtained
in the diagonal form, which describes the total energy of the optical signal evolving along the propagation
distance. Such formulism provides an intuitive interpretation of the quantum-optical noise as the result of a
classical Markov process in the space of the photon number states. The formulism would be more convenient for
practical engineers, and should be sufficient for fiber-optic systems with direct intensity detection, because the
quantity of concern is indeed the number of photons contained in a signal pulse. Even better, the model admits
analytical solutions to the photon-number distribution of the optical signals.

Keywords: optical communications, quantum noise, loss and gain, random process, Markov process, photon-
number distribution.

1. INTRODUCTORY QUANTUM FIBER OPTICS

In modern fiber transmission lines, the optical signals experience alternating loss and gain. The amplified spon-
taneous emission (ASE) of the in-line amplifiers is usually blamed and considered as the sole source of noise that
corrupts the optical signals. However, it should be noted that the fiber propagation loss is a random process along
the length of propagation. The stochastic nature of the loss process induces a random fluctuation to the energy
of the optical signals, namely, an extra source of noise, which could become comparable to the commonly blamed
ASE noise. It is therefore necessary to understand and include this noise in system design and performance
evaluation. Fundamentally, the optical noise in random loss/gain has a quantum origin, incurred as a result
of the corpuscular nature of electromagnetic radiation. Such quantum noise is often treated in the Heisenberg
representation, and interpreted as the result of a Langevin noise operator,! or vacuum field operators,>?3 added
to the Heisenberg field operator of the signal. This paper adopts the Schrodinger representation, and uses a
density matrix in the basis of photon number states to describe the signal field, the medium reservoir, and their
interactions. When the medium degrees of freedom are traced out, a reduced density matrix is obtained in the
diagonal form, which describes the total energy of the optical signal evolving along the propagation distance.
Such formulism is sufficient for practical fiber-optic systems with direct intensity detection, because the quantity
of concern is indeed the number of photons contained in a signal pulse. Furthermore, our formulism provides
a more intuitive interpretation of the quantum-optical noise as the result of a classical Markov process in the
space of the photon number states.

To deal with quantum noise, we naturally need the quantum theory of light,>* which was first developed
by Dirac in 1927.5 The established procedure of the so-called canonical quantization of radiation starts from
a set of classical modes of the electromagnetic field, then relates each mode to a quantum-mechanical harmonic
oscillator, and associates to which two operators, named the annihilation and the creation operators respectively.
Both operators have non-negative integers as eigen values. The corresponding eigen states are called the number
states, and interpreted as having integer numbers of photons excited in the mode referred. For the problem
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of signal transmission in an optical fiber, it is convenient to describe the optical signals in terms of the eigen
propagation modes of the fiber waveguide. Especially for a single-mode fiber, there is only one guided mode
(actually two if counting the different polarizations), optical energy in all other spatial modes are not well-
confined in the fiber and eventually get lost into the environment. With a fixed polarization, it is customary to
represent an information-carrying optical pulse by,% 7

E(z,t) = EgRe[A(z,t) exp(—iwot)] = Eg[A,(z,t) coswot + A;(z,t) sin wpt], (1)
H(z,t) = Holm[A(z,t) exp(—iwot)] = Hol[A;(z,t) coswot — Ar(2,t) sinwpt], (2)

where E and H are the electric and magnetic fields respectively, wq is the center frequency of the optical signal,
and A(z,t) = A.(z,t) + iA;(z,t) is the so-called slow-varying envelope of the signal pulse, that is, A(z,t) has
small derivatives with respect to t. The envelope A(z,t) is found to satisfy a nonlinear Schrodinger equation
(NLSE),% 7
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where (3 is the propagation constant at the center frequency, 31 is the inverse of the group-velocity, B2 is the
group-velocity dispersion (GVD), and + is the Kerr nonlinear coefficient of the fiber. The term of optical loss in
the classical NLSE is not included here, because that term is to be treated quantum-mechanically, and derived
from the first principles of light-matter interactions. If neglecting the fiber nonlinearity and the GVD, then the
NLSE is solved by a space-invariant envelope of the form A(z,t) = A’(t — 812) exp(ifyz), for some real-valued
function A’(7). The fiber nonlinearity may be neglected for the current purpose, because the effect of quantum
noise is significant only when the signal power becomes low, and that is when the nonlinearity diminishes. The
effect of the GVD is not usually negligible, when the signal modulation speed is high and the propagation distance
is long. However, it is believed that the GVD would not alter the characteristics of the quantum noise due to the
highly localized light-matter interactions, as the accumulation of GVD over a short length of fiber is too small
to change the shape of the signal pulse. We shall proceed to quantize the signal field in a single-mode fiber using
the space-invariant mode of pulse propagation. Let ¢(t) = coswot, and p(t) = sinwgt, then the electric and the
magnetic fields are represented as,

= iBo A + ivy| AP A, (3)

E(zat) = EO[AT(Z,t)q(t) + Ai(Z,t)p(t)], (4)
H(z,t) = HolAi(z,1)q(t) — Ar(z,1)p(t)]. (5)
The Hamiltonian, namely the total energy, of the signal field can be calculated as,
1
M=y [(B? + i)z = O + 5Car (6)
with
= / [€E2A2(z,t) + pH2A2 (2, 1)) dz, (1)
Co = [leBRA}e.t) + A2 ). (8)

The orthogonality between A,.(z,t) and A;(z,t) has been used in the derivation. Based on the quadratic form
of the Hamiltonian, and the dynamical equations ¢ = —wop, p = wpq, we would draw an analogy between the
optical mode and a harmonic oscillator, and further the analogy into the quantum world by turning ¢ and p into
operators, and introducing commutation relations,

’LTL(UO
C\Cy’

It is customary to make a canonical transformation to the annihilation and creation operators,

lq,p] = [2,9] = [p,p] = 0. (9)
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which satisfy the commutation relations,
[a,at] =1, [a,a] =[aT,at]=0. (12)

The Hamiltonian of the field becomes,
1
H = th (a"'a + 5) s (13)

and the electromagnetic fields, now also operators, are represented as,

in terms of a and aT. In the standard quantum theory of light,>® the modal functions are usually time-
independent, and often called the normal modes of the field. Here, however, our modal function A(z,t) is
time-dependent, albeit slowly. The propagating mode A(z,t) is actually a linear superposition of many normal
(time-independent) modes with slightly different oscillation frequencies w around the center wy. By grouping the
normal modes together into A(z,t), we have adopted an approximation that neglects the energy variation of hw
from hwg. We shall further assume that all the normal modes participate into the same interactions with the
same environment, namely, the same material molecules and unguided modes of the fiber, and the strength of the
interactions is approximately the same for all the normal modes. Such approximation enables the concise single-
mode quantum description of the optical signal as in equations (12) through (15), and it should be applicable to
practical wavelength-division multiplexed (WDM) communication systems, as the modulation bandwidth of the
optical signals is usually far less than the center carrier frequency.

The eigen states of a and at are the number states |n), n € N ={0,1,2,---}, and the eigen relations are,

ajn) = Vn|n—1), YneN, (16)
atln) = Vn+1|n+1), YneN. (17)

For each n € N, the state |n) has the physical interpretation of n photons being contained in the single-mode
wave packet defined by A(z,t). The wave function of a general wave packet may be expanded in the basis of the
number states as,

) =" enln), (18)
from which the expectation value of an operator ) may be calculated as,
WIQIY) =D crea(mlQln). (19)
In particular, the average photon number is calculated as,

(Plnly) = (Ylataly) =D nlea | (20)

n

If the wave packet is probed by a photon counter, for example a photo-detector (which is totally destructive
though), |e,|? is obviously the probability of n photons being detected.

2. INTERACTION WITH THE ENVIRONMENT

The loss or gain to the wave packet of a single pulse is due to interactions with the environment, including
molecules in the waveguide, that may absorb photons from or emit photons to the wave packet, and other
optical modes, which signal photons may be scattered into or from. Such interacting molecules and leaky optical
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modes shall be called interaction centers for convenience. The active molecules and Rayleigh scattering centers®
are naturally localized in the waveguide material. Light scattering due to waveguide non-uniformities, such as
micro-bends and tensile stresses,® may take place within an extended length of fiber. However, the effect may
still be viewed as localized comparing to the long distance of signal transmission. With all interaction centers
localized, the following model Hamiltonian? may be used to describe the interaction between the signal field and
the environment,

U=> higrao} + gratoy )d(z — z), (21)

k

where k € Z labels the interaction centers, zj is the location of the kth center, gy is the coupling strength, o,j and
o, are operators to change the state of the interaction center after absorbing/emitting a photon respectively. It
is assumed that the sequence {zy }rez is a realization of a generally inhomogeneous Poisson point process!? with
intensity A(z) along the length of the fiber, that is, the probability of having an interaction center inside an interval
(2,2 4+ dz) is A(z)dz for an infinitesimal dz. Although not always true, it is often a very good approximation to
model each interaction center as a two-state system, because multi-photon processes are usually rare events. A
general quantum state of the kth interaction center is dg| | )i + ug| ), where |di|? + |ug|?> = 1, | [)x and | T)
are the down and up states of the interaction center, which satisfy,

ol De=1Mk  of| e =0,
ol e =10k o[ e =0. (22)

Despite the simplicity of the signal field and the individual interaction centers, it becomes rather complicated
to describe the whole system in a fully quantum-mechanical manner, because of the vast Hilbert space of an
interacting many-body system. To shorten the notation, we write the wave function of the whole system in a
simplified form,

[U(t) =) ¢ult)In), (23)

where |n) is the nth number state of the signal field, and the coefficient ¢, (¢) is ®-valued, representing the
quantum state of all interaction centers entangled with |n) at time ¢, ® is a suitable Hilbert space to accommodate
all the possible wave functions of the interaction centers, or simply called the environment. The Schrodinger
equation is still of the form,

Z%Nj(t» =U[¥(t)) = Z(Qkaalj + g,ﬁa+a,;)5(z — )| P (1)), (24)
k

in the interaction picture, although the solution is quite involved. Before going further, it is noted that the
space-invariance of the wave packet, A(z,t) = A'(t — f12) exp(ifyz), makes the space and time variables inter-
changeable, if the space-time extent of the wave packet is neglected, and the signal pulse is represented by a
“point particle” at the center of the packet, t — 81z = 0. With ¢ substituted by [z, equation (24) becomes,

Z%M’('Z» = Z@(gkao,;F + g,’;a"'alz)é(z — 21)|¥(2)), (25)
k

which describes a quantum dynamics along the z axis. Equations (23) and (25) may be combined to get,

i) da(2)ln) =) Bilgrac) +gia oy )3(z — z1)dn(2)In). (26)

k

It is difficult in general to solve the whole system quantum-mechanically. Just the initial condition would
be hard to specify, with so many interaction centers, each of which is randomly located, and may be at any
superposition state of the two levels. However, we note again that the signal field interacts with the interaction
centers in a highly localized manner. The signal can interact with only one center at any given time. The
interaction centers that the signal has already passed do not interact with the signal any longer in terms of
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energy exchange. But the spooky quantum entanglement!'' still connects the signal to the past interaction

centers. Were not for the quantum entanglement, a much simpler system of the signal field exchanging energy
with the immediate interaction center would be isolated from the complicated many-body system. One way to
extract such isolated system from the whole, somewhat forcedly, is to use the density matrix'? description of the
entire system, that is pyor = |¥)(¥|, then take the trace over all the unwanted degrees of freedom, leaving only
those of the signal field and the single chosen interaction center. The reduced density matrix is then a complete
representation of the isolated system, although the quantum coherence in the reduced system is also reduced,
even totally lost. That is, the system is no longer in a pure quantum state, but a statistically mixed one.'? This
is the familiar yet hard-to-understand phenomenon of decoherence. Fortunately, decoherence is indeed what
happens in reality. In fact, the technique of tracing over the environmental degrees of freedom has been used
to explain the mysterious phenomenon of decoherence of open quantum systems in general.'® 14 Furthermore,
the main goal of optical communications is not to perform any delicate experiments of quantum optics where
quantum coherence needs to be carefully preserved, but to deliver information encoded in the number of photons
for which quantum coherence is not the first concern. Consequently, we shall assume that the vast number of
interaction centers and their interactions with the larger environment destroy the quantum coherence in a signal
wave packet quickly and completely, so that the reduced density matrix of the signal field has only diagonal
terms, that is, p = >, pnn|n)(n|, where p,, > 0 is a classical probability of the wave packet being at the number
state |n). Note that each |n) is still a pure quantum state, but there is no quantum coherence among the number
states. So we need only to consider the reduced system of a wave packet at a number state |n) interacting with a
single interaction center, as shown in Fig.1, then mix different initial number states statistically according to the
input density matrix. An output density matrix is obtained, also in the diagonal form, when taking the trace of
the resulted density matrix again over the degrees of freedom of the interaction center. This leads to a classical
Markovian model that relates the input/output density matrices.

signal
pulse interaction
center
——
z = Z zZ = Z
k k+1

Figure 1. A signal pulse interacting with an interaction center.

3. A CLASSICAL MARKOVIAN MODEL

Let us set zx41 — 2z = 1/A(zx) in Fig.1, assume that there is one and only interaction center in the interval,
which is at a general quantum state di| |) + ux| 1), and take |n) as the input state of the signal wave packet.
The interaction Hamiltonian is V;, = h(gkaa,j + grato, )0(z — z), which transforms the input quantum state
Uy, =dg|n)| ) + ug|n)| 1) into,
Uppr = exp[—i[V(t)dt/h] (dk[n)| 1) + uk|n)| 1))

= exp[~ifi(gracy + grat o)) (diln)| 1) +ukn)| 1))

~ [1—ifi(gracy +grato)] (diln)| 1) + uxln)| 1))

= dg|n)| 1) +uk|n)| 1) —iBigrdivn [n —1)| 1) —ifigrurvn + 1 [n+1)] |). (27)

By taking the trace of |Uyy1)(¥ri1| over the interaction-center degrees of freedom, then neglecting the off-
diagonal terms, and renormalizing the coefficients, a reduced density matrix for the signal wave packet is obtained
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as,
(1= nBlgnl* — BElgn*lunl*) ) (n] + 187 |gr*|dre*[n — 1) {n — 1] + (n + 1) 6 |gn*|ux]*[n + L) (n + 1] (28)

A mixed state of the signal field p(zx) = >_,, pnn(2k)|n)(n| is therefore converted by the interaction center into
another mixed state,

p(zirn) = D (L—=nBilgel* = Blgrl*|url*) pn(21) ) (1]

+ D+ DBl P on 1 g1 (28] ) (1]

n

+ > nBilgrl*lun 1,01 (z8) In) (n]. (29)

By definition, p(zk41) =D, Prn(2k+1)|n)(n|. So the coeflicients of the density matrices are related by,

pan(zrs1) = (1 =nB7|gul® = BElgnl*luel®) pnn(21) + (0 + 1)8F|gxl?|del? Pt 1,41 (2)
+ n6%|gk|2|uk‘2pn71,n—1(2k)7 vV néeN. (30)

The dynamics of the reduced density matrix may be interpreted as a discrete Markov chain'®'7 indexed by k € Z,
with N = 0,1,2,--- being the state space, and [poo(2x), p11(2k), p22(2k), - - -] being the probability distribution
vector at “time” k. The compound process of the discrete Markov chain and the Poisson point process of
interaction centers is a continuous Markov chain along the z axis, with the transition law for the probability
distribution given by a continuous version of equation (30),

prn(2) = —a(2)[n + f(2)lpnn(2) + (2)[1 = f(2)](n + Dpni1ni1(2) + a(2) f(2)npn-1,n-1(2), VneEN, (31)

where
a(z) E A=)8g(2)% (32)
f2) € Juz) (33)

Obviously, a(z) > 0 represents a compound interaction strength, which is the spatial density of interaction centers
times their quantum coupling strength to the signal field, 0 < f(z) < 1 is the fraction of interaction centers
at z that are at the excited state, ready to emit a photon. Note that our definition of the interaction centers
includes both the actual atomic levels of the active molecules, and the passive light scattering into/from other
optical modes due to fiber non-uniformities, micro-bends, and tensile stresses etc. Consequently, the parameters
a(z) and f(z) should be determined by counting both the active and the passive interaction centers. The effect
of the passive interaction centers may become significant in, for example, distributed Raman and erbium-doped
fiber amplifiers, where the passive centers could induce a sizable internal loss in the fiber. The commonplace
case of a transmission fiber with no amplification in the middle constitutes an extreme in which the passive light
scatterers all at the “down state” are the only interaction centers.

So we have derived, from the first-principles of quantum optics, the fundamental equation (31) governing the
dynamics of photon-number distribution of optical signals propagating in a waveguide with loss and/or gain.
The mathematical equation is essentially the same as appeared in precious studies of photon statistics in optical
amplifiers.'®20 It may be recognized as the forward Kolmogorov equation,'® 17 and can be solved analytically
by using the method of probability generating function (PGF).18 2% To simplify the notation, let

Pn(z) = pnn(z)a VneN, (34)
a(z) = a2)f(2), (35)
b(z) = a(z)[1-f(z)], (36)
then equation (31) may be re-written as,
P, =anP,_1 — (n+1)P,] +b[(n+1)Pny1 — nP,], (37)
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which is in the same form as appeared in previous works.2’ The established formulas'® 2% can then be adopted

with little or no modification. A brief introduction to the PGF method seems to be appropriate here. A PGF
F(z, z) for the probability distribution vector [Py(z), P1(z), P2(z),- -] is defined as,

F(z,2) &Y a"P(2). (38)

n

And the inverting formula is,
1 [Q”F (z,2)

Bule) =5 ox™

= , YneN. (39)
n! :|a:—0

The forward Kolmogorov equation (37) may be translated into a differential equation for the PGF,

5_1: = (az — b)(z — 1)58—1: +a(z —1)F, (40)

with the initial condition,

F(z,0) =Y a"P(0). (41)

The differential equation is analytically solved by,320

- 1 1+ (N -G)(1-2)]"
Fe) = o 2RO [

where

Gx) ¥ exp [ NGRS dc} , (13)

def ey [ alO)
NG ¥ aw) /O RS (44)

The physical interpretation of G(z) is the overall gain/loss from 0 to z, whereas N(z) may be interpreted as the
ASE due to the presence of interaction centers that are at the “up state”.

4. APPLICATIONS AND A NUMERICAL EXAMPLE

Our Markovian model is derived rigorously from the first principles of quantum optics, and the model is applicable
to a wide range of guided-wave systems with arbitrary distributions of gain/loss media along the length of
the waveguide. The existence of analytical solutions enhances further the appeal and prediction power of the
established model. We expect the model to find many applications in quantifying the quantum noise in fiber-
optic systems, such as transmission fibers without gain, doped fiber amplifiers, and Raman amplifiers. As an
example, we shall work out the quantum noise induced by the pure loss of a transmission fiber. This example is
chosen not just because of its simplicity, but more importantly due to the fact that such noise has largely been
neglected by the fiber-optic engineering community.

Optical signals usually start with a high initial power level and high signal-to-noise ratio (SNR) in order to
reach a long transmission distance. For all practical purposes, the noise of the laser transmitter may be neglected,
and the starting signal may be modelled by a pure number state |m), which is of course noise-free if detected
by an ideal photo-detector. The photon number m corresponds to the total energy of a pulse. For example, in
a 10 Gb/s system, the peak optical power is often set to approximately 0 dBm, or 1 mW, so a binary “one” is
represented by an energy packet of 1 mW x 100 ps = 10~ '3 .J, or approximately 10° photons at 1.55 ym. So
the input state of the pulse may be set to the number stat |m) with m = 10°. The average photon number will
be reduced to about 10* after a 100-km fiber propagation with 20 dB loss. Because of the random nature of
the loss process, the actual photon number at the end will fluctuate around 10%, even though the signal starts
with exactly 106 photons. We resort to equation (42) for an exact solution to the probability distribution of the
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number of signal photons at the output of the transmission fiber. There is only loss in this case, G = 0.01 and
N =0, therefore,

F(z) =) Pu(0)[(1-G)+Ga]" = [(1-G) + Ga]™, (45)
which corresponds to the well-known binomial distribution,
m _

Pn:( " )(1_G)m "Gh e [0,ml, (46)

here m = 1,000,000 is a very large number. This result agrees exactly with that obtained using a Langevin
noise operator in the Heisenberg representation.! The probability distribution is plotted in Fig.2, where the
horizontal axis is the deviation of the photon number n from the mean mG = 10,000, and the vertical axis is
the normalized probability P,. Graphically, the signal photon number is seen to fluctuate on the order of +100
with large probability. To quantify the effect of the quantum noise, it is found that the probability distribution
is excellently fitted by a Gaussian distribution,

(47)

_ 2
P, = P(n) = Ppaxexp [—M} ,

2mG(1 — G)

here G = 0.01 and mG = 10,000. Indeed, it can be proved by using Stirling’s formula that log P(n) is the
Taylor expansion of log P, in power series of (n — mG)/y/mG(1 — G) up to the quadratic term.?!  When the
attenuated optical signals are converted into electrical current by an ideal photo-detector, the level of the “one”
bits is Gaussian distributed as given above, while that of the “zero” bits is free of fluctuations, so the @ factor

1
Qdéf (n)1 — (n)o _ () _ mG _ ] mG . (48)
o1+ 09 o1 VvmG(1 - G) 1-G
For the current example, it predicts () = 100 after one span of 100-km fiber. However, the ) factor will decrease
quickly as the transmission distance increases. Even if the attenuated signal were boosted back to the 1-mW
power level by a noiseless amplifier, and such amplified fiber span were repeated M times to reach a long-distance
of M x 100 km, the Q would be degraded to /mG/M (1 — G), based on a model assuming that the “effective
Gaussian noise” at the end of each fiber span is independent and additive. The independency assumption is only
natural, while the additivity should be a good approximation so long as the accumulated noise remains much
lower than the signal level. If taking M = 25 for a 2500-km transmission line, the @ would not be much better
than 20 at the end, even completely neglecting the noise contribution of the repeating amplifiers! The problem
gets worse when the signal modulation speed goes to 40 Gb/s and higher. If the signal power level is fixed, then
the number of photons contained in one pulse is inversely proportional to the modulation speed. Consequently,
the @ is inversely proportional to the square-root of the modulation speed, so @ < 10 for 40 Gb/s, and @ < 5
for 160 Gb/s, at the end of 25 fiber spans of 20 dB loss. The @ factor needs to be higher than 6 in order to
guarantee a bit-error-rate (BER) below 107°.! Clearly, the quantum noise due to fiber loss could amount to a
significant source of noise that should be seriously considered in practical fiber transmission systems, especially
in those with modulation speed of 40 Gb/s and above.

is,
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