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Abstract

Multimode interference devices are examined outside of the step-index, paraxial regime. To determine the optimum length of these
devices, we maximize the projection of the propagated field in the multimode section onto the desired field profile. By consideration of
the orthogonality among the guided modes, this reduces to a criterion of minimum weighted phase errors at the imaging plane, with no
dependence on the actual mode field profiles. The results are confirmed by comparison with mode propagation analysis simulations. This
analysis is immediately applicable to the design of multimode interference devices in weakly-guiding geometries such as shallow ridge
waveguides, weakly-guiding materials systems such as photosensitive glasses and polymers, and waveguides with graded claddings
and/or weak index gradients in the core, such as those formed through diffusive processes. The procedure is also used to explain the
presence of the recently observed pseudo-self-image, which is not predicted by the standard theory of multimode interference.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Periodic self-imaging in planar multimode waveguides,
first suggested by Bryngdahl [1] and elaborated upon by
Ulrich [2], has gained widespread interest in the photonics
community. Essentially a guided-wave implementation of
the Talbot effect [3,4], self-imaging has been used to design
1 x N splitters [5], multiplexers [6], dual-band splitters [7],
switches [8], etc. The compact size, loose fabrication toler-
ance, and wide optical bandwidth [9] of such multimode
interference (MMI) devices are often cited as decisive fac-
tors in the adoption of these structures over those exploit-
ing alternate physical principles such as directional
coupling or adiabatic modal evolution.

The fundamental characteristic of step-index waveguides
that permits their use in self-imaging is a distribution of
propagation constants that is — within the paraxial approx-
imation — quadratic. As will be reviewed in the following
section, propagation of an input image through a bound
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medium with a quadratic mode spectrum results in the for-
mation of discrete imaging planes in which the modes have
a well-defined phase relation, leading to direct, mirrored,
and multiple self-images. In reality, the spectrum of propa-
gation constants in a step-index multimode waveguide is
not precisely quadratic, and thus the formation of self-
images is not exact. This was discussed by Ulrich [2] and
Ulrich and Kamiya [10], who pointed out that the optimum
imaging length differs from the paraxial imaging length in
the case of strong guiding. A more common source of
non-idealities in self-imaging arises from the use of weak
guiding. Many photonic materials such as polymers and
glasses have a very small index difference between core
and cladding, which provides many desirable characteristics
such as low thermal and polarization dependence. How-
ever, the resulting weak guidance produces a waveguide
with a highly non-parabolic mode spectrum. In addition,
diffusive waveguide fabrication processes result in the for-
mation of gradient-index waveguides, which also have a
non-parabolic mode spectrum. Despite this fact, MMI
devices have been successfully fabricated by deep-ultravio-
let modification of polymers [11], and by ion exchange in
glass [12,13]. These devices are generally designed by trial
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and error, or by using purely numerical optimization
procedures that generally involve the calculation of overlap
integrals between the fields in the multimode and access
waveguides [14].

In this work, we abandon the assumption that the prop-
agation constants of the multimode waveguide have a qua-
dratic distribution. Given the actual propagation constants
(calculated using any available type of mode solver), the
optimum length of the multimode waveguide is determined
by maximizing the correlation between the actual and
desired field distributions, a procedure that requires knowl-
edge of only the propagation constants and modal expan-
sion coefficients and not the modal field profiles
themselves. In the following section, we review the relevant
theory of paraxial self-imaging. A description of the opti-
mization criterion is given in Section 3. In Section 4, three
examples are provided; self-imaging in a ‘“perfectly-
guided” structure in which non-paraxial effects are non-
negligible, a weakly-guided step-index MMI device and
one with an index gradient in the cladding. Finally, in Sec-
tion 5, we use this theory to explain the phenomenon of
“pseudo-self-imaging,” in which self-imaging appears at
planes that are not predicted by the paraxial theory.

2. Multimode imaging in step-index waveguides

We present here a brief review of multimode self-imag-
ing in a step-index waveguide (Fig. 1), as described in
Ref. [15]. The results of this analysis will describe the par-
axial image with respect to which the actual image will be
compared. We assume that the waveguide is two-dimen-
sional, n = n(x,z); three-dimensional waveguides can be
reduced to two dimensions by application of the effective
index method, with no loss of generality provided that
the waveguide supports a single vertical mode.

At a free-space wavelength Ay, the waveguide supports m
guided modes, with modal index v =0,1,...,(m — 1). The
modes have sinusoidal profiles within the core, with prop-
agation constants f§, and lateral wavenumbers k,,, related
by the dispersion equation

nCol

5\
|

nCl

L L
-We/2 We/2
X

Fig. 1. Transverse field profiles of the first six guided modes in a
multimode slab waveguide, illustrating the concept of effective width W..
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where n, is the core index, ko= 2n/A, is the free-space
wavenumber, and
v+ Dm

by = —————. 2
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In (2), W, is the effective width of the waveguide, which ac-
counts for the finite penetration depth of the mode into the
cladding. Although this penetration depth is dependent on
mode number, the difference among modes is negligible in
the case of strong guiding, so all effective widths are as-
sumed identical and equal to
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where ¢ = 0 for TE polarization and 1 for TM, W is the
physical width of the waveguide, and ng is the cladding in-
dex. A few of the lowest-order modes in this waveguide are
illustrated in Fig. 1.

Invoking the paraxial approximation by expanding (1)
to second order in (v + 1) yields

(v+ 1)l
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The spacing of the propagation constants can thus be ex-
pressed as

v+ 2)r
(Bo — B,) = Y (5)
where
i 4p, W
n = = < 6
L By — B 320 (6)

is the beat length of the two lowest-order modes. The par-
abolic distribution of propagation constants shown in (5) is
the crucial element in self-imaging. In the following section,
we will examine the consequences of the presence of higher-
order terms in the expansion of (1).

Propagation of an input field through the multimode
waveguide is modeled using mode propagation analysis
(MPA). The input field ¥(x,z =0) can be expressed as
an expansion in the waveguide eigenmodes /,(x),

m—1

Y(x,0) =Y e, ), (7)
v=0

with the time dependence exp(iw?) suppressed, and with

expansion coefficients

I 0 dr
(2, W2 (x)dx) 2

Strictly speaking, the sum in (7) should include radiation
modes as well, but for all practical applications, the spatial
spectrum of ¥(x,0) is sufficiently limited that excitation of
radiation modes has negligible impact at the image plane.
After propagating a distance z, the field takes the form

(®)
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Y(x,z) = i

v=0

cv‘//v(x) eXp[i(ﬁo - ﬁv)z]7 (9)
where a non-significant overall phase factor exp(—ifyz) has
been removed from the sum. Finally, substituting (5) into
(9) leads to the following form for the field at plane z:

W(x,z) = mz_:c‘,w\,(x) exp [i%z] . (10)

Comparing (7) and (10), it is apparent that ¥(x,z) will be
an image of ¥(x,0) if

exp [iv(‘);—an)nz} =1 or (-1). (11)

This condition is met at the planes
z=pQ3L,), p=0,1,2,... (12)
With p even, (10) represents a direct image, ¥(x,z) =
¥(x,0). When p is odd, using the properties

even for v even,

2) = 13
(v +2) {odd for v odd, (13)

and

v (—x) = { ¥, (x)

—¥,(x)

we see that the image will be mirrored about the plane
x=0; ¥Y(x,z) = ¥(—x,0). Utilizing the direct and mirrored
self-images leads to bar- and cross-couplers, respectively.
Often, the input field will be symmetric about the x-plane,
in which case only even modes will be excited. In this case,
images of the input will be found at planes [16]

z=p3L./4), p=0,1,2,... (15)

It is also possible to obtain N-fold multiple self-images at
the planes [17]

z = p(3L/N),

for v even,

(14)
for v odd,

p=0,1,2,... (16)
or, in the symmetric input case,
z=p(3L,/4N), p=0,1,2,... (17)

provided that a minimum of N modes in the multimode
guide are excited by the input image, in order to provide
adequate spatial resolution for N-fold imaging. For most
practical devices, the first non-trivial image plane (p = 1)
is used in order to minimize the device length. In the fol-
lowing section, we shall see that in realistic MMI devices,
the optimal imaging planes are offset with respect to those
calculated via (12), (15)—(17).

3. Multimode imaging beyond the paraxial approximation

In real waveguides, the distribution of propagation con-
stants is not precisely quadratic as assumed in (4), and thus
the relation (10) is inaccurate. As an example, expanding
(1) to fourth order in (v + 1) results in

v+ 1D)’riy (v D'rdg
4ng, W? 64n3, W: ’

ﬁv = kOnco - (18)
and thus the total field at a distance z from the input plane
is

m—1

V(x,z) =Y e, (x) explip,(2)] (19)

v=0

with the modal phases derived analogously to those in (5),

SRR R S

For all MMI devices, the term (A¢/n¢ We)2 < 1, so no real-
istic imaging length z exists such that ,(z) satisfies any
appropriate self-imaging relationship (such as (11)) for all
v. It should be noted that perfect self-images at very large
multiples of L, may exist, however these are not practical
in the design of compact devices with finite propagation
loss, and will not be discussed further. In this case, it is
inevitable that phase errors will occur, with magnitudes
increasing proportionally to (v + 1)* — 1.

In a manner similar to the balancing of aberrations in a
geometrical optical system by a longitudinal shift of the
image plane, we wish to develop a procedure by which
the imaging quality can be optimized by altering the length
of the multimode waveguide. Geometrical aberration the-
ory has been used with some success in the study of free-
space Talbot imaging with high magnification [18], but
loses validity in most cases of interest in MMI design as
it does not take into account the coherent superposition
of the guided modes. Ulrich and Kamiya [10] proposed
an analytical solution to find the best image plane in a
non-paraxial MMI device, but their method requires a very
large number of guided modes to be present, with negligi-
ble excitation of the modes near cutoff, and it is not valid
for weakly-guided or gradient-index waveguides.

We choose to optimize the device length by maximizing
the projection of the field obtained at an arbitrary image
plane z onto the desired output field profile. Denoting the
desired quantities by a tilde (~) and using (19) to express
the field at a plane z, a figure of merit F(z) is created:

2

F(z) = (¥ (x,2)|¥(x,2)),
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(21)

Taking the absolute value squared of the inner product
ensures that F(z) is a real quantity, with 0 < F(z) < 3Je,]*
(=1 for negligible excitation of radiation modes). It is pro-
portional to the power coupling between the multimode
guide and the desired output image, which is generally
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the quantity of interest. This figure of merit is particularly
appealing in that its calculation does not require any inte-
gration, as the mode field profiles vanish from (21) due to
orthogonality.

Two important characteristics of F(z) are readily appar-
ent and warrant further discussion. First, each term in the
sum is proportional to the square of that mode’s excita-
tion coefficient, and thus the optimal design of the multi-
mode waveguide depends not only on the index profile of
the multimode guide, but also on the input field, through
(8). This shows that the spatial resolution of the device
cannot be increased indefinitely by using a narrow (high-
spatial-bandwidth) input guide, as the phase errors in
higher-order modes will become more prominent; this lim-
itation was described in [10]. Limiting the spatial band-
width to reduce phase errors is similar in concept to the
reduction of aberrations in a geometrical optical system
either by apodizing or by reducing the size of the limiting
aperture. The second important characteristic is that each
term in F(z) is periodic in phase error. A mode that is
dephased by an integer multiple of 2m will not have any
detrimental effect on the self-imaging; this has no analog
in the geometrical case.

4. Examples

4.1. Step-index slab waveguide without paraxial
approximation

As a first example, we investigate a ““perfectly-guided”
step-index waveguide, such as that formed by an air gap
between two perfect mirrors [19]. The assumption of per-
fect guiding is used only to force the condition that
W, = W is identical for all modes. The waveguide has a
width of W =20 um, with n.,, =1 and 49 = 1.55 pm. The
input image is Gaussian and symmetric with 4 um full-
width (1/e¢* power), and we wish to achieve 1 x 2 splitting.
As the input image is symmetric with respect to the multi-
mode waveguide, odd modes are not excited. From (6) and
(17) with p =1 and N = 2, we find that the paraxial imag-
ing length is 129.0 pm. Table 1 lists the propagation con-
stants and expansion coefficients of the first 6 even modes
(higher-order modes have negligible excitation), calculated
using both the fourth-order approximation (18) and the
fully accurate representation (1). Fig. 2a shows F(z) in
the vicinity of the paraxial imaging length, calculated using

Table 1
Propagation constants and expansion coefficients for the 1x2 splitter
described in Section 4.1

Mode number, v, (um ") [from (18)] B, (um™") [from (1)] ¢,

0 4.050623 4.050623 0.690787
2 4.026185 4.026184 0.567054
4 3.976868 3.976855 0.382090
6 3.901797 3.901692 0.211342
8 3.799655 3.799162 0.095958
10 3.668687 3.666970 0.035764

1

0995

0.99

0975

H . i ] h
124 126 126 127 128 128
Propagation Distance [um]

0.97

Fig. 2a. F(z) for 1 x 2 splitting in a perfectly guided slab waveguide. Solid
line: paraxial approximation (paraxial image length = 129.0 pm). Dashed
line: fourth-order approximation (optimum image length = 126.3 um).
Dotted line: fully accurate propagation constants (optimum image
length = 126.1 um).

the desired phases ¢, = v(v + 2)n/8 (see (17)). From this
figure, we see that the optimum imaging length is
126.3 um (to fourth order) or 126.1 um (fully accurate).
The power cross-section at the paraxial and optimized
image planes, calculated using MPA, is shown in Fig. 2b.
Although the optimized image plane is shifted by only
2.9 um from the paraxial image plane, there is a noticeable
improvement in the self-image quality.

4.2. Weakly-guided slab waveguide

Next, we examine the design of a 1x4 splitter in a
weakly-guided system with cladding index ny = 1.500 and
neo = 1.505. A multimode guide of 80 pm width is used,
with a symmetric Gaussian input of 8§ um full width. At a
wavelength of 1.55 um, using (3), (6), and (17), the paraxial
1 x 4 imaging length is found to equal 1713.8 um. Applying
a one-dimensional finite difference method to solve for the
propagation constants, and using the desired modal phases
of @, =v(v+2)n/16, we see that F(z) is maximized at
1754.5 um. Power cross-sections calculated by MPA are
shown in Fig. 3, and it is readily apparent that the unifor-
mity of the 4-fold images is greatly improved in the opti-
mized image plane.

4.3. Gradient-index waveguide

To fully explore the versatility of our design optimiza-
tion method, we now examine an MMI structure that is
formed in a gradient-index waveguide. In diffusive wave-
guide fabrication processes such as ion exchange, the wave-
guide can be considered as having a core of constant index,
with a cladding that is graded due to side-diffusion under
the mask [20] (note that only the transverse index distribu-
tion is relevant here; the waveguide is assumed to support a
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Fig. 2b. Power cross-sections in a perfectly guiding multimode waveguide.
Solid line: paraxial image plane (129.0 pm). Dotted line: optimized image
plane (126.1 pm).
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Fig. 3. Power cross-sections in a weakly-guiding multimode waveguide
(parameters are given in the text). Solid line: optimized image plane
(1754.5 pm). Dashed line: paraxial image plane (1713.8 um).
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Fig. 4. Refractive index profile of the waveguide analyzed in Section 4.3.
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Fig. 5. F(z) for 1 x N splitting in the waveguide described in Section 4.3.
Solid line: N =1 (optimum image length = 531.2 pm). Dashed line: N =2
(optimum image length = 266.9 um). Dotted line: N = 3 (optimum image
length = 178.4 ym). Dash-dotted line: N=4 (optimum
length = 135.5 um).

image

single vertical mode, and the entire structure can be
reduced to two dimensions through application of the effec-
tive index method as mentioned in Section 2). We will now

use (21) to design a 1 X N splitter in a multimode waveguide
with index profile

ng + An,
| na + Anexp [—

X

| < w2,
a(lx| =5)], x| = w2,
1

with ng =1.50, An=0.05, « = 0.5 um™ ", and W =20 um.
The index profile is shown in Fig. 4. At / Ao = 1.55 pm, with
a Gaussian input with 4 um full-width, curves of F(z) for
N = 1-4 are calculated using @, = v(v + 2)nt/4N, and are
plotted in Fig. 5. The power cross-sections at the optimized
imaging lengths are provided in Fig. 6. It is apparent that
the total insertion loss decreases with N, due to the shorter

propagation length over which the modes are able to de-
phase.

(22)

5. Pseudo-self-imaging

The pseudo-self-image (PSI), identified recently by
Hong and Lee [21], and Hong et al. [22] occurs when a
self-image of acceptable quality is formed in an image
plane that is not predicted by the theory presented in Sec-
tion 2. We show here that the existence of these PSIs is
predicted by our optimization method. The structure
described in Ref. [21] is designed in buried silica, with an
index difference of 0.75%, a width of 18 um and a thickness
of 6 um. Access waveguides have a square cross-section of
6 um width, and are offset from the multimode waveguide
axis by 6 um. Standard MMI theory predicts a series of
alternating mirrored and direct self-images, with a distance
of 6L, between direct self-images, as shown in Eq. (12).
However, the authors of [21,22] demonstrated via simula-
tion and experiment that each direct (mirrored) self-image
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Fig. 6. Power cross-sections at the optimized 1 x N image planes for the waveguide described in Section 4.3: (a) N=1, L; =531.2 um; (b) N=2,

L, =2669 um; (c) N=3, L3;=178.4 um; (d) N=4, L, = 135.5 pm.

Table 2
Propagation constants and expansion coefficients for the pseudo-self-
imaging device described in Section 5

Mode number, v By (um~1h ¢,
0 5.888899 —0.553698
1 5.883226 —0.689314
2 5.874017 0.443861
3 5.862215 0.139311
PB2
; X1 PB1 B1 ]
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Fig. 7. F(z) for the waveguide described in Section 5. Solid line: bar state.
Dashed line: cross state. Peak labels: X1, first cross state; PBI, first
pseudo-bar state; B1, first bar state; PX1, first pseudo-cross state; X2,
second cross-state; PB2, second pseudo-bar state.

is followed closely by a mirrored (direct) one, a phenome-
non that shows promise in the design of compact coarse
wavelength division multiplexers [23]. Using a two-dimen-
sional semivectorial finite difference mode solver [24] for

X [um]

1000 2000 3000 4000 S000 6000
Propagation Distance [pm]

Fig. 8. Power profile within the waveguide described in Section 5.

quasi-TE polarization, the multimode waveguide is shown
to support four guided modes, with propagation constants
and excitation coefficients given in Table 2. The figure of
merit F{(z) is shown in Fig. 7 for both direct and mirrored
self-imaging, with both self-images and pseudo-self-images
indicated. The power profile within the multimode guide is
shown in Fig. 8. In addition to the self-images located at
1710.7, 3413.5, and 5132.0 um, pseudo-self-images of very
high quality appear at 2146.0, 3831.0, and 5559.6 um.
The slight discrepancy between these imaging lengths and
those found in [21] is due only to an ambiguity in absolute
refractive index and polarization in that reference.

6. Conclusions

We have developed a simple figure of merit to optimize
the length of non-ideal multimode interference devices.
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Based on a maximization of the projection of the field at an
arbitrary image plane onto the desired output field, the fig-
ure of merit reduces to a minimization of the sum of phase
errors of each mode, weighted by the proportion of power
contained in that mode. Application of this optimization
method is simple and rapid as it does not require calcula-
tion of overlap integrals at each potential imaging plane.
The method is illustrated by the analysis of perfectly-
guided (non-paraxial), weakly-guided, and gradient-index
waveguides.
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