
 Nonreciprocal waveguide Bragg gratings 
    Mykola Kulishov a, b, Jacques M. Laniel a, Nicolas Bélanger a, José Azaña c,   David V. 

Plant a  
a Department of Electrical and Computer Engineering, Photonic System Group, McGill University, Montreal 

(Quebec) H3A 2A7, Canada  
jlaniel@ photonics.ece.mcgill.ca , nbelan@ photonics.ece.mcgill.ca , plant@photonics.ece.mcgill.ca 

b Adtek Photomask Inc., 4950 Fisher str., Montreal (Quebec) H4T 1J6, Canada  
mkulishov@adetkphotomask.com 

Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications (INRS-EMT), 
800 de la Gauchetière Ouest, suite 6900.  Montréal (Québec)  H5A 1K6  Canada  

azana@emt.inrs.ca 
 

Abstract: The use of a complex short-period (Bragg) grating which 
combines matched periodic modulations of refractive index and loss/gain 
allows asymmetrical mode coupling within a contra-directional waveguide 
coupler. Such a complex Bragg grating exhibits a different behavior (e.g. in 
terms of the reflection and transmission spectra) when probed from opposite 
ends. More specifically, the grating has a single reflection peak when used 
from one end, but it is transparent (zero reflection) when used from the 
opposite end. In this paper, we conduct a systematic analytical and numerical 
analysis of this new class of Bragg gratings. The spectral performance of 
these, so-called nonreciprocal gratings, is first investigated in detail and the 
influence of device parameters on the transmission spectra of these devices is 
also analyzed. Our studies reveal that in addition to the nonreciprocal 
behavior, a nonreciprocal Bragg grating exhibits a strong amplification at the 
resonance wavelength (even with zero net-gain level in the waveguide) while 
simultaneously providing higher wavelength selectivity than the equivalent 
index Bragg grating. However, it is also shown that in order to achieve non-
reciprocity in the device, a very careful adjustment of the parameters 
corresponding to the index and gain/loss gratings is required. 

©2005 Optical Society of America 
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1. Introduction 
 
While losses in integrated optics devices are generally detrimental, it has been also shown that 
properly tailored optical losses can be exploited, allowing even the creation of new device 
functionalities [1]. For instance, it has been recently demonstrated that in long-period grating 
(LPG) – based devices, new and interesting wavelength filtering operations (e.g. tunable 
wavelength filters) can be implemented by properly controlling the cladding – mode losses 
[2]. Furthermore, the gain/loss coefficient, or imaginary part of the refractive index, can be 
controlled through the injected carrier concentration in semiconductor waveguides or by 
changing the pumping conditions in rare-earth-doped fibers.   

In an earlier work [3], Poladian showed theoretically that if the imaginary component of 
the refractive index in a Bragg grating is also periodically modulated, then the conventional 
symmetry in the contra-propagating mode interaction in these devices can be “broken”. This 
leads to an asymmetrical behavior in this mode coupling process; specifically the Bragg 
grating will induce coupling from the forward-propagating mode into the backward-
propagating mode when the light is launched from one end of the grating but the same is not 
true when the light is launched from the opposite end. Poladian suggested that the grating 
profile required to exhibit ideal asymmetric operation might be achieved by using a perfectly 
matched combination of index and gain/loss gratings [3]. In this paper we will use the term 
“nonreciprocal” Bragg grating (NBG) to refer to this new class of complex gratings. However, 
it should be noted that the term “nonreciprocal” in the present context has a different meaning 
to that in the context of the Lorentz reciprocity theorem. In fact, it should be emphasized that 
optical-isolating devices cannot be created on the basis of the NRBGs studied here, unless 
additional magneto-optic or nonlinear effects are included. 

In conventional index Bragg gratings (IBGs) with a periodic modulation of the real 
refractive index, the symmetry in two-mode coupling is associated with the symmetry of the 
Fourier transform of any real function (e. g. a sine or cosine function). Nonreciprocal mode 
interaction is achieved when the periodic perturbation is described by a purely imaginary 
function that has only single-sided spatial components: ( )Λ∆=∆ zjnn o π2exp~ . This 
perturbation can be practically realized using a combination of an index grating (real grating) 
and a gain/loss grating (imaginary grating) of the form exp(±j2πz/Λ) = cos(2πz/Λ) ± 
jsin(2πz/Λ). Since the original suggestion by Poladian [3], to the best of our knowledge, there 
has been no systematic study of NRBGs, as well as no investigation on how deviations from 
the predicted ideal distribution of the complex perturbation can affect the grating device 
performance. More recently, Greenberg and Orenstein [4] have stated that a complex grating 
of the form exp(±j2πz/Λ) can also be used “to break the space-time reversibility in (two) co-
propagating mode interaction within a grating-assisted co-directional coupler”. This original 
work has been followed by another more detailed study on the same topic [5]. These recent 
works have focused on the case of co-directional coupling and again, no detailed analysis on 
the counterpart effect in contra-directional (Bragg) couplers has been provided. 

The objective of this paper is to analyze in detail the spectral performance and design 
constraints of the NRBGs. The spectral features of ideal NRBGs are first studied, emphasizing 
some unique aspects of the spectral behavior of these gratings with a potential interest in 
practical applications. The robustness of this concept is then evaluated by investigating how 
deviations from the ideal complex grating distribution (e.g., mismatching in the amplitudes of 
the perturbations or spatial locations of the two gratings) affect the device spectral 
characteristics. 

2. Theoretical model of NRBG   

The modeling of the NRBGs is based on coupled mode theory [6]. The NRBG is defined as a 
periodic longitudinal perturbation of the complex refractive index, which includes both the 
index (real) grating and the gain/loss (imaginary) grating (the period of the perturbation is 
assumed to be the same for the two gratings, i.e., Λ). This perturbation can be expressed as 
follows:  
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where DCn∆  and ACn∆  are respectively the constant and modulated perturbation to the 

refractive index and DCα∆  and ACα∆  are respectively the constant and modulated 

perturbation to the loss/gain, and k0 = 2π/λ where λ is the wavelength in vacuum. Eq. (1) is a 
general description of a complex grating and it takes into account the following: the DC and 
AC terms can have different amplitudes; the real and imaginary gratings can also exhibit 
different amplitudes; and the phase difference between the two gratings is not necessarily π/2. 
Specifically, the term ∆z represents the additional phase shift between the cosine (real) and the 
sine (imaginary) gratings. Notice that Eq. (1) does not include the effect of gain or loss 
saturation. It is important to emphasize that ideal non-reciprocal behavior is achieved when (i) 
the phase difference between the index and gain/loss gratings is exactly π/2 (∆z = 0) and (ii) 
both gratings exhibit an identical strength ( 0kn ACAC α∆=∆ ). In this case, the refractive 

index perturbation is described by a purely imaginary function that has only single-sided 
spatial components. As mentioned in the introduction, this is the fundamental requirement to 
ensure a non-reciprocal behavior in the grating structure.  

Here we consider a Bragg grating within a single-mode waveguide. It is assumed that the 
waveguide is weakly guiding and no energy is coupled to radiation modes [6]. The 
propagation constant of the fundamental propagating mode is β. The perturbation given by Eq. 
(1) will induce power transference from the forward-propagating mode (+β) into the 
backward-propagating mode (-β) at the phase-matching wavelength. The evolution of the 
forward-propagating, A(z), and backward-propagating, B(z), mode amplitudes within the 
slowly varying envelope approximation is determined by the following equations [6, 7]:  

                                [ ]zjBjAj
dz

dA βκσ ∆−+= 2exp~
12 ,                                 (2) 

                          [ ]zjAjBj
dz

dB βκσ ∆−−= 2exp~
21 ,                                 (3) 

where ασσ j+=~ , and σ and α are proportional to the non-modulated real and imaginary 

part of Eq. (1), Λ−=∆ πββ  and the coupling coefficients are: 

                                ( )[ ]Λ∆−= zjn πκκκ α 2exp12 ,                                             (4) 

                                ( )[ ]Λ∆−+= zjn πκκκ α 2exp21 .                                  (5) 

The coupling coefficients κn and κα are proportional to the overlap between the spatial mode 
distributions of each waveguide and the AC component of Eq.(1). It is important to point out 
that α  represents the gain/loss coefficient experienced by the propagating fields. Therefore, 
the gain/loss associated with the intensities is given by 2α. The gain or loss experienced by 
the propagating modes can be modeled by either taking αi > 0 for loss or αi < 0 for gain. In 
order to simplify Eqs. (2) and (3), it is possible to define a complex propagation constant 

ασββ j++=~
 and a complex phase-matching factor: Λ−= πβσ ~

ˆ . Eq. (2) and (3) can then 
be re-written as follows:  

                                            SjRj
dz

dR
12ˆ κσ += ,                                             (6) 

                                            RjSj
dz

dS
21ˆ κσ −−= ,                                 (7) 

where new mode amplitudes are defined as: 
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                                         [ ]zjzAzR β∆= exp)()(                                              (8) 

                                           [ ]zjzBzS β∆−= exp)()(                                         (9)                         

In the ideal case when there is no shift between the index and gain gratings (∆z = 0), the 
coupling coefficients are: 

                                     )(12 ακκκ −= n ,                                                      (10) 
                                     )(21 ακκκ += n .                                                      (11)                                    

Eqs. (10) and (11) show that when the modulation of the real grating is equal to the 
modulation of the imaginary grating, the coupling coefficient κ12 is cancelled out, i.e., κn–κα 
=0. 

                              
Fig. 1. Schematic for the interacting modes, A(z) and B(z), in the Bragg grating. 

 
Figure 1 shows the structure of the Bragg grating and the interacting modes. The ends of 

the grating are located at z = 0 and L. The solutions for the coupling equations (6) and (7) are 
obtained by using 2x2 transfer matrices M [7]. The matrix describing the transmission 
through the uniform complex grating relates the complex amplitudes A(L) and B(L) with the 
complex amplitudes A(0) and B(0) in the following way: 
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and has the following elements: 
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where ( ) 2/12
2112 σ̂κκγ −= . It is important to point out that the matrix elements given by Eq. 

(13) contain complex parameters. The only real parameter in (13) is the position z along the 
grating. If a signal is injected from the left side of the grating, A(0) = 1 and therefore B(L) = 
0, (see Fig. 1) then the complex amplitude of the reflected signal is given by B(0) = -M21/M22 
and the complex amplitude of the transmitted signal is given by A(L)  = M11 – M12M21/M22.  
On the other hand, if the signal is launched from the right side of the grating, i.e. B(L) = 1 and 
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therefore A(0) = 0, then the complex amplitude of the reflected signal is given by A(L) = M12/ 
M22 and the complex amplitude of the transmitted signal is given by B(0) = 1/M22. 

3. Spectral and dispersion characteristics of NRBGs 

In the numerical simulations presented here, the following effective index for the reflected 
mode is neff = 1.55 (the propagation constant is then given by β = k0neff ). It is assumed here 
that the effective index is equal to the group index of the propagation mode. The grating 
period which allows coupling between the forward- and backward-propagating modes at a 
resonant wavelength of 1550 nm is Λ = 0.5 µm. In all the cases, the spectra are calculated 
assuming a grating of length L = 5 mm. 

Figure 2 presents reflection (red, solid) and transmission (blue, dash) spectra for Fig. 2(a) 
IBG ( κnL = π/2, κα = 0) and Fig. 2(b) ideal NRBG (κn = κα, ∆z = 0) for κ21L = (κα + κn)L = π. 
It is important to point out that in our calculations, we neglect any contributions from the DC 
component in Eq. (1), which means that we assume that σ = 0 and α = 0.  

 
Fig. 2. Transmission (blue, dash) and reflection (red, solid) spectra of a IBG (κnL = π/2, κα = 0) 
(a) and an ideal NRBG (∆z = 0 and κn = κa, so that κ21L = (κα+ κn)L= π) (b). The group delay 
(red, solid) of the reflected light is shown in (c) and (d) with respect to (a) and (b) respectively. 
The length of the grating is 5 mm. 
 

The transfer matrix for the ideal NRBG takes the following form: 
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If the light is launched at z = 0 so that the boundary condition are A(0) = 1 and B(L) = 0 (see 

Fig.1), we can infer from Eq. (12) that the transmitted light is A(L) = M11 = )
~

exp( Ljβ  and the 
reflected light is B(0) = - M21/M22 (which is the case showed in Fig. 1(b). However, if the 
optical signal is injected into the right end of the grating, B(L) = 1 and A(0) = 0, then there is 
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complete light transmission: B(0) = 1/M22 = )
~

exp( Ljβ with zero reflection A(L) = 0. In other 
words, as expected, the mode coupling process is strongly asymmetric in this structure.  

A significant difference between an IBG and a NRBG is that the latter allows one to add 
a signal through reflection without simultaneously dropping the transmitted signal (as for the 
case of regular gratings). This can be observed in Fig. 2(b). Furthermore, it is worth noting 
that the reflected signal is wavelength dependent, while the transmitted signal remains 
constant in wavelength. Indeed, as it can be inferred from the transfer matrix Eq. (14), light 
propagates through the grating as if there were no grating in the waveguide. 

3.1 Amplification mechanism 

As we can see from Fig. 2(a), the IBG with κnL = π/2 is only moderately strong, i.e. it 
provides a reflectivity slightly higher than 80% at the resonance wavelength. However, 
combination of this weak index grating with the complementary grating of gain/loss (of the 
same strength καL = π/2 ) results in surprisingly strong reflection combined with amplification 
of almost 10 dB. It is important to point out that the spectra shown in Fig. 2 were computed 
for zero DC amplification in the waveguide (α  = 0). Equal segments of gain and loss in the 
imaginary grating imply no net gain or loss along the grating. However, the power 
conservation law is not violated here since the complex grating is an active structure and 
power is supplied to maintain optical gain. 

The mechanism of the strong amplification becomes evident from a simple analysis of the 
electric field inside the NRBG. For the ideal NRBG (κn = κ and κα = κ), its imaginary 
counterpart is defined by the following equation: 

                                    ( ) [ ]Λ∆−=∆ /2sin
0

z
k

jzn AC πα
                                      (15) 

We know that for when Im{∆n} of Eq. (15) is positive, it represents loss while when it is 
negative, it represents gain. At the phase matching condition (∆β = 0) and no DC contribution, 
Eqs. (2) and (3) are greatly simplified, and for A(0) = A0 and B(L) = 0, these equations have 
the following solutions: A(z) = A0 and B(z) = -2jκA0(z − L). The electric field distribution 
inside the NRBG is then given by the following relation: 

       ( ) ( ) ( ) ( ) ( )[ ] ../exp/exp
2

1
)()( cczjzBzjzAzEzEzE +Λ−+Λ+=+= −+ ππ          (16) 

where E+(z) and E-(z) are respectively the forward and backward propagating fields inside the 
device. As a result, the field intensity inside the NRBG, E(z)E*(z), is found to be 

                            ( ) ( ) ( ) ( )[ ]Λ−−−+= /2sin441 222
0 zLzLzAzI πκκ                  (17) 

As we can see from equation (17), the field intensity modulation is always in phase with the 
gain grating and this condition is satisfied for any values of κL. Figure 3 shows the field 
intensity inside the grating with respect to the gain grating periodicity. 

It is evident that a constructive interaction between the forward- and backward-
propagating modes in the gain segments of the imaginary grating is responsible for 
amplification of the reflected wave. At the same time, the asymmetric distribution of the 
complex perturbation prevents the mode interaction when the signal is launched from the 
opposite side of the grating. In this direction the NRBG ideally transmits the light without any 
reflection. 
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Fig. 3. Electric field intensity distribution (red, solid) inside the NRBG with respect to the 
imaginary grating (blue, dash) for (a) κL=π/2 and (b) κL=π. The negative segments of the 
imaginary grating correspond to the gain periods, whereas the positive ones correspond to the 
loss periods.  

3.2 Frequency selectivity 

It is also interesting to compare the reflection bandwidth of a NRBG and an IBG with the 
same index grating strength (e.g., κnL = π). In the NRBG, equal contributions from the real 
and imaginary parts result in a total grating strength of κ21L = κnL + καL = 2κnL = 2π (here 
κ12L = 0). The corresponding bandwidths are estimated as the difference between the 
wavelength at peak reflectivity and the first zero at either side around this peak reflectivity. 
The respective bandwidths ∆λnr (for the NRBG) and ∆λc (for the IBG) are given by the 
following expressions: 

                                         
Lneff

nr λ
λ
λ =∆ ,                                   (18) 

                                    
2
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⎛+=∆
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where κ = κn (κα is zero for the conventional case). From Eqs. (18) and (19) it can be easily 
inferred that the bandwidth of the NRBG is always narrower than that of the IBG (this is in 
good agreement with our observations in Fig. 2 and Fig. 3). In other words, the NRBG offers 
the advantage of higher spectral selectivity as compared with a IBG. In the case of a “weak 
grating” limit, i.e. when κL << π, the bandwidth of a IBG is described by the same equation as 
that of the equivalent NRBG (in this case, Eq. (19) can be approximated by Eq. (18)). 
However, even in this situation, the IBG has a FWHM bandwidth twice broader than the 
NRBG with the same index modulation strength (this is actually related to the fact that κ21 = 
2κn). The “weak grating” limit corresponds with the case when light penetrates the full length 
of the IBG (in a NRBG, the light penetrates the full grating length, regardless the perturbation 
strength). We recall that for an IBG in the “strong grating” limit, κL >> π, all the light is 
reflected along a short section at the input end of the grating, and thus the bandwidth is 
independent of length and directly proportional to the coupling coefficient. Further, as Fig. 
2(b) shows, the transmission of an ideal NRBG is completely insensitive to the grating 
strength κL while its reflection is proportional to the grating strength (when neglecting gain 
saturation). 

3.3 Dispersion Characteristics of NRBGs 

An additional feature of the NRBG is that as shown in Fig. 2(d), it is completely 
dispersionless; for comparison, we recall that the same is not true for a IBG, where the 
dispersion in the reflected band is not null but rather significant towards the edges of this band 
(see Fig. 2(c)). In contrast, a NRBG with negligible average (net) gain/loss does not introduce 
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any dispersion at all the wavelengths. In Fig. 2(d), the group delay is constant as a function of 
wavelength and its value corresponds to the time required for the mode to propagate through 
the grating, neffL/c, where c is the speed of light in vacuum. This time is also marked by the 
blue dotted line in Fig. 2(c). At wavelengths of zero reflection, the phase undergoes 
discontinuities, which translate into the observed sharp jumps (delta functions) in the group 
delay characteristic. 

When a net gain/loss is introduced in the guide(s), a wavelength-dependant group delay is 
observed, and in particular, the discontinuities at the zero reflection wavelengths, gradually 
spread into bandwidth limited peaks. 

 

 
Fig. 4. (a) Reflectivity and (c) the group delay of the IBG (blue, κnL = π; κα = 0) and (b) 
reflectivity and (d) group delay of the ideal NRBG (red, ∆z = 0, κ21L = (κα+ κn)L = 2π, κ12 = 0) 
for the gratings with zero net gain (solid, α = 0) and nonzero net gain (dash, α = - 0.5 cm-1 in the 
waveguide). All the gratings are assumed to be 5mm long. 
 

3.4 Effect of net gain in the waveguide 

Another remarkable behavior of the nonreciprocal grating is demonstrated in Fig. 4, where we 
introduce a non-zero net gain into the waveguide (through imaginary part of the propagation 
constant, α). As it can be seen in Fig. 4(a), when α becomes negative (which means that a 
pump is applied providing a net gain) two symmetrical maxima near the edges of the IBG 
reflection band arise. These maxima grow as the net gain increases. This phenomenon is 
called threshold degeneracy and was first described for distributed feedback (DFB) lasers [8]. 
In contrast, the reflection spectra corresponding to the NRBG in Fig. 4(b) shows a single peak 
of amplification at the resonance wavelength. Moreover, this amplification is much more 
efficient than that of the IBG (blue, dash). One can also notice that in general, the dispersion 
characteristics are strongly affected by the presence of net gain in the guide, and this 
distortion within the reflection bandwidth is especially significant in the case of NRBG (Fig. 
4(d)). These observations lead us to the conclusion that in the case of a NRBG, amplification 
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can be better controlled by the grating strength, rather than by introducing a higher net grain 
(e.g., by increasing the pump power).  

Finally, to give a reference, a typical maximum index modulation of 10−4 corresponds to 
a gain peak of approximately 2α = 4.05 cm-1 (35 dB/cm) (for a perfect matching gain grating, 
operating at 1550 nm). This gain level can be achieved relatively easily with current 
integrated technologies using semiconductor gain media [9]. This gain level is also close to be 
feasible in erbium-doped waveguide amplifiers (EDWA) [9] where several dB/cm gain 
coefficients are possible, representing a good compromise between the high erbium doping 
level and parasitic effects.  

4. Robustness of the NRBG design 

The results presented in Section 3 have been calculated for an ideal NRBG, where both real 
and imaginary gratings have equal amplitudes (κn = κα), and they are shifted exactly a quarter 
of the period with respect to each other (∆z = 0). Our objective now is to evaluate the impact 
of deviations from these ideal conditions on the grating’s spectral characteristics. 
 

 
Fig. 5. Spectral characteristics of the NRBG for different values of the amplitude imbalance 
between the real κn and κα imaginary components. There is no grating position deviation (∆z = 
0): (a) reflection spectrum and (b) reflection group delay for light launched into the left side of 
the grating (z = 0); (c) transmission spectrum and (d) transmission group delay (the 
transmission characteristics are the same regardless the light input direction, z = 0 or L); (e) 
reflection spectrum and (f) reflection group delay for light injected into the right side of the 
grating (z = L). 

 

4.1 Grating amplitude misbalance 

As shown in Fig. 5, imbalance between the real and imaginary amplitudes of the NRBG, κn 

and κα, affects the transmission spectra (as compared with those of the ideal NRBG). It is 
important to point out that in our simulations, we assume perfect phase matching between the 
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index and the gain gratings, i.e. ∆z = 0. In all the plots in Fig. 5, the solid (red) curves 
correspond to the case of an ideal grating or 0% difference between the respective amplitudes 
(the difference is given by 2(κn-κα)/(κn+κα)) in the grating amplitudes), the dashed (blue) 
curves correspond to a 1% difference, and the dash-dotted (brown) curves correspond to a 5% 
difference. As we can see, the grating amplitude imbalance of 5% leads to i) small reduction 
of amplified reflection (~ 1.2 dB) for the wave incident from the left side (Fig. 5a); ii) 
approximately 2 dB deviation from perfect 100% transmission (Fig. 5(c)); iii) and slight 
increase in reflection from right to left from zero to –18 dB (Fig. 5(e)). If one neglects sharp 
peaks on the plots for the group delay (Fig. 5(b), Fig. 5(d), Fig. 5(f)), the reflected and both 
transmitted waves exhibit practically the same deviation from the ideal non-dispersive 
behavior. 
 

    
Fig. 6. Spectral characteristics of the NRBG for the different values of the grating position 
deviation ∆z between the real and imaginary gratings. There is no grating amplitude imbalance 
(κn =κα). (a) reflection spectrum and (b) reflection group delay for light launched into the left 
side of the grating (z = 0); (c) transmission spectrum and (d) transmission group delay 
(transmission characteristics are the same regardless the light input direction z = 0 or L); (e) 
reflection spectrum and (f) reflection group delay for light injected into the right side of the 
grating (z = L). 

4.2 Grating position deviation 

The next potential imbalance between the index and gain gratings may be induced by 
deviation, ∆z, from the ideal position of real and imaginary gratings (ideally ∆z = 0). Fig. 6 
presents simulations for amplitude-matching gratings (κn = κα) with different values of 
position imbalance: ∆z/Λ = 0% (solid, red), ∆z/Λ = 1% (dash, blue) and ∆z/Λ = 5% (dot, 
magenta). Unlike the amplitude imbalance, the 5% position deviation leads to i) the shift in 
the resonance wavelength of the reflected light in Fig. 6(a) accompanied by ~ 2 dB increase in 

(C) 2005 OSA 18 April 2005 / Vol. 13,  No. 8 / OPTICS EXPRESS  3077
#6649 - $15.00 US Received 22 February 2005; revised 6 April 2005; accepted 6 April 2005



peak amplification; ii) ~ 5 dB deviation from perfect 100% transmission (Fig. 6(c)); iii) and 
substantial increase in reflection from right to left from zero to –4 dB (Fig. 6(e)). The position 
imbalance also produces strong dispersion especially within the reflection band, as it can be 
seen in Fig. 6(b) and Fig. 6(f). Notice that the position deviation generally imposes a stricter 
tolerance on the grating design, than the amplitude imbalance. 

5. Conclusion 

In this paper, the coupled mode equations corresponding to a general complex Bragg grating 
perturbation, i.e., combination of real grating (index perturbation) and imaginary grating 
(gain/loss perturbation), in an optical waveguide were introduced and solved. The solution to 
these equations was first obtained for the case of a complex grating providing an ideal 
nonreciprocal behavior. Our analysis reveals unique characteristics for these complex gratings 
(as compared with conventional index Bragg gratings). In addition to the anticipated 
nonreciprocal behavior, a complex Bragg grating exhibits a strong amplification at the 
resonance wavelength even with zero net gain/loss level in the waveguide. This amplification 
occurs only within a narrow reflection wavelength band, thus leading to a simultaneous 
narrowband filtering process. In fact, as a filtering device, a nonreciprocal grating exhibits i) a 
high wavelength selectivity which exceeds (at least twice) the selectivity of the equivalent 
index Bragg grating; and ii) a dispersionless behavior along all the filter bandwidth. The 
impact of deviations in the grating profile with respect to the conditions for achieving an ideal 
nonreciprocal behavior has been numerically evaluated. Specifically, two potential deviations 
have been considered, namely mismatch between the amplitudes of the index and gain 
gratings and mismatch between their respective positions within the waveguide. In general, 
our numerical simulations show that the amplitude imbalance should be < 5% while the 
position deviation should be < 1% in order to ensure less than 1 dB deviation from ideal 
regime in transmission and less than –20 dB of reflection from the “non-reflecting” end of the 
grating. 

Besides the intrinsic physical interest of the results presented here, they also point to 
nonreciprocal Bragg gratings as potentially interesting components from a more practical 
perspective. For instance, a device with all the combined features of a single nonreciprocal 
Bragg grating (dispersionless, narrowband filter incorporating amplification) may be 
attractive for applications in the context of DWDM optical communication systems. 

Acknowledgments 

This work was supported by the Natural Sciences and Engineering Research Council 
(NSERC) and industrial and government partners, through the Agile All-Photonic Networks 
(AAPN) Research Network. 

(C) 2005 OSA 18 April 2005 / Vol. 13,  No. 8 / OPTICS EXPRESS  3078
#6649 - $15.00 US Received 22 February 2005; revised 6 April 2005; accepted 6 April 2005


