
Simultaneous nonlinearity suppression
and wide-band dispersion compensation

using optical phase conjugation

Haiqing Wei and David V. Plant
Department of Electrical and Computer Engineering

McGill University, Montreal, Canada H3A-2A7

davidhwei@yahoo.com

Abstract: Optical phase conjugation is demonstrated to enable simul-
taneous wide-band compensation of the residual dispersion and the fiber
nonlinearities in dispersion-managed fiber transmission lines employing
slope-compensating fibers. When the dispersion slope of transmission
fibers is equalized by slope-compensating fibers, the residual dispersion
and the slope of dispersion slope are compensated by middle-span optical
phase conjugation. More importantly, fiber nonlinearity may be largely
suppressed by arranging the fibers into conjugate pairs about the phase
conjugator, where the two fibers of each pair are in scaled translational
symmetry. The translational symmetry is responsible for cancelling optical
nonlinearities of the two fibers up to the first-order perturbation, then a
mirror-symmetric ordering of the fiber pairs about the conjugator linearizes
a long transmission line effectively.
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1. Introduction

Group-velocity dispersion and optical nonlinearity are the major limiting factors in high-speed
long-distance fiber-optic transmissions [1, 2]. Dispersion-compensating fibers (DCFs) have
been developed to offset the dispersion effects of transmission fibers over a wide frequency
band. The most advanced DCFs are even capable of slope-matching compensation, namely,
compensating the dispersion and the dispersion slope of the transmission fiber simultaneously
[3, 4]. Nevertheless, DCFs could hardly be designed and fabricated to match exactly the disper-
sion and the slope of transmission fibers simultaneously. In general, it is difficult to perfectly
compensate the fiber dispersion across a wide frequency band. There are always residual dis-
persion and higher order derivatives, even using the best slope-matching DCFs [5, 6, 7]. The
significance of the residual dispersions increases as the total signal bandwidth becomes wider
[8]. It has been proposed for some time that optical phase conjugation (OPC) may be employed
in the middle of a transmission line to equalize the dispersion effect of the transmission fibers
[9]. Furthermore, theoretical and experimental studies have proved the feasibility of using OPC
to compensate the fiber nonlinearities, at least partially [10, 11, 12]. In the past, the application
of OPC has been limited by the lack of performing conjugators that require low pump pow-
ers, operate over wide bandwidths, and suffer low penalties. Such technical difficulties and the
inability of compensating the dispersion slope have been to OPC’s disadvantage in competing
with DCFs as dispersion compensators. However, it is noted that the performance of optical
phase conjugators has recently been and will continue to be improved significantly [13, 14].
Moreover, we argue that OPC and modern DCFs may work together nicely to complement
each other’s functionalities. On one hand, transmission fibers and DCFs may be combined into
fiber spans with zero dispersion slope, then OPC is able to equalize the residual dispersion and
the slope of dispersion slope among such spans. On the other hand, the flexible designs and
various choices in the dispersion parameters of specialty fibers, in particular DCFs, make it
possible to construct fiber transmission lines that manifest “scaled symmetries” about the OPC,
which are desired properties to effectively suppress fiber nonlinearities [15, 16, 17].

Based on the nonlinear Schrödinger equation (NLSE), it has been shown that OPC enables
one fiber transmission line to propagate inversely (thus to restore) an optical signal that is non-
linearly distorted by the other, when the two fiber lines are mirror-symmetric about the OPC in
the scaled sense [11, 15, 17]. Preliminary experiments have confirmed such effect of nonlinear
compensation [11, 12]. Unfortunately, the mirror symmetry requires that the conjugating fiber
segments have opposite loss/gain coefficients, the same sign for the second-order dispersions,
and opposite third-order dispersions. These conditions are not conveniently fulfilled in many
practical fiber transmission systems. In particular, a mirror-symmetric signal power profile is
possible only when some transmission fibers are made distributively amplifying by means of
distributed Raman pumping [18] or using distributed Er-doped fiber amplifiers (EDFAs) [19],
so to obtain a constant net gain in correspondence to the loss coefficient of other fibers, or
all fibers are rendered lossless. Recent experiments [20, 21, 22] have indeed demonstrated near
constant-power or low power-excursion optical transmissions. However, there are still concerns
of cost, reliability, and double-Rayleigh-scattering noise with distributive Raman amplification
[18]. For any distributive amplifier, the loss of pump power makes it difficult to maintain a con-
stant gain in a long transmission fiber. Consequently, the mismatch in signal power profiles de-
grades the result of nonlinear compensation. Yet another shortcoming of the previous schemes
[11, 12] is that they do not compensate higher-order dispersions, which could turn into a sig-
nificant limitation in wide-band transmission systems. By contrast, a recently proposed method
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of nonlinearity compensation using scaled translational symmetry requires that the conjugating
fiber segments have the same sign for the loss/gain coefficients, opposite second-order disper-
sions, and the same sign for the third-order dispersions [16, 17]. Such conditions are naturally
satisfied, at least approximately, in conventional fiber transmission systems, where, for exam-
ple, a standard single-mode fiber (SMF) may be paired with a DCF as conjugating counterparts.
In Refs. [16, 17], we have briefly touched upon the basic idea and feasibility of nonlinearity
compensation using scaled translational symmetry. In this paper, we shall present an extensive
and systematic study of the theory and practical applications of scaled translational symmetry
in fiber transmission systems for nonlinearity compensation. Most importantly, we demonstrate
that the combination of scaled nonlinearity, translational symmetry, OPC, and slope-matching
dispersion compensation makes our proposals of nonlinearity compensation rather practical
and highly performing. The notion of scaling fiber nonlinearity is not entirely new. The concept
was proposed and utilized by Watanabe et al. in their 1996 paper [11], which however was
limited to the mirror-symmetric configuration, and presented embodiments using segmented
fibers which might not be convenient to implement in practice. Even though we may be the
first to emphasize the concept and importance of scaled translational symmetry to nonlinearity
compensation in fiber transmission lines [16, 17], it was noted previously by Marhic et al. [23]
that two fibers having opposite dispersions and with OPC in the middle may compensate each
other’s Kerr nonlinear effects. However, Ref. [23] did not discuss any practical embodiment,
nor did it mention the scaling of nonlinearity which is indispensable for practical implemen-
tations of translationally symmetric transmission lines. Both Refs. [11] and [23] had the effect
of dispersion-slope neglected, and did not worry about the Raman effect among wavelength-
division multiplexed (WDM) channels. By contrast, this present paper strives for the most gen-
erality, and it might be one of the early proposals for optimizing fiber transmission systems by
combining the necessary and available four elements, namely, scaled nonlinearity, translational
symmetry, OPC, and slope-matching dispersion compensation. It is this combination that sig-
nifies the present work and makes our proposals of nonlinearity compensation rather practical
and highly performing.

2. Principles of dispersion and nonlinearity compensation using OPC

Dispersion equalization by OPC may be explained nicely using transfer functions in the fre-
quency domain [24]. Optical signals in a fiber, possibly of many channels wavelength-division
multiplexed together, may be described by a total electrical field E(t) = A(t)exp(−iω0t), with
ω0 being the center frequency of the optical band, and A(t) being the slow-varying envelope
[17, 25]. Equivalently, the total optical signal may be represented by the Fourier transform of
the envelope,

Ã(ω) def= FA(t) =
∫

E(t)exp[i(ω0 +ω)t]dt, (1)

where F denotes the operation of Fourier transform. Leaving aside the loss/gain and neglecting
the nonlinearities, the linear dispersive effect of a fiber transmission line is described by a
multiplicative transfer function,

H(ω) = exp

(
i
+∞

∑
k=2

bkωk

k!

)
, (2)

with
bk =

∫
βk(z)dz, ∀ k ≥ 2, (3)
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being the dispersions accumulated along the fiber length,

βk(z)
def=

∂ kβ(z,ω)
∂ωk

∣∣∣∣
ω=ω0

, ∀ k ≥ 2, (4)

being the z-dependent dispersion coefficients of various orders [1, 17, 25], and β(z,ω) being
the ω-dependent propagation constant of optical wave in the fiber. Because of the definition in
terms of derivatives, β2 may be called the second-order dispersion (often simply dispersion in
short), while β3 may be called the third-order dispersion, so on and so forth. The engineering
community has used the term dispersion for the parameter D = dv−1

g /dλ , namely, the derivative
of the inverse of group-velocity with respect to the optical wavelength, and dispersion slope
for S = dD/dλ [1]. Although β2 and D are directly proportional to each other, the relationship
between β3 and S is more complicated. To avoid confusion, this paper adopts the convention that
dispersion and second-order dispersion are synonyms for the β2 parameter, while dispersion
slope and third-order dispersion refer to the same β3 parameter, and similarly the slope of
dispersion slope is the same thing as the fourth-order dispersion β4.

A fiber line with dispersion parameters in Eq. (4) transforms a signal Ã(ω) into H(ω)Ã(ω),
while OPC acts as an operator that changes the same signal into OPC[Ã(ω)] = Ã∗(−ω). Con-
sider two fiber transmission lines that are not necessarily identical, but nevertheless have accu-
mulated dispersions satisfying the conditions,

bR
k = (−1)kbL

k , ∀ k ≥ 2, (5)

so that HR(ω) = HL(−ω), where the super- and sub-scripts L, R are used to distinguish the
two fiber lines. When OPC is performed in the middle of the two fiber lines, the entire setup
transforms an input signal Ã(ω) into,

HR(ω)OPC[HL(ω)Ã(ω)] = HR(ω)H∗
L(−ω)Ã∗(−ω) = Ã∗(−ω). (6)

If Ã(ω) is the Fourier transform of A(t), then the output signal Ã∗(−ω) corresponds to A∗(t)
in the time domain, which is an undistorted replica of the input signal A(t) up to complex
conjugation. This proves that the dispersion of a transmission line with OPC in the middle may
be compensated over a wide bandwidth, when the dispersion coefficients of the odd orders on
the two sides of OPC, bL

2k+1 and bR
2k+1 with k ≥ 1, in particular the third-order dispersions bL

3
and bR

3 , are both compensated to zero, or they are exactly opposite to each other, while the
even-order dispersion coefficients are the same on both sides. If a link has bR

3 = −bL
3, or even

bR
3 = bL

3 = 0, then it is compensated at least up to and including the fourth-order dispersion b4.
It is worth pointing out that the center frequency of the signal band may be shifted by the OPC
from ωL

0 on the left side to ωR
0 on the right side, ωL

0 �= ωR
0 , and the dispersion parameters on the

two sides of OPC are defined with respect to the corresponding center frequencies.
To compensate the nonlinearity of transmission fibers, our method of using scaled transla-

tional symmetry [16, 17] requires that the conjugating fiber segments have the same sign for the
loss/gain coefficients, opposite second-order dispersions, and the same sign for the third-order
dispersions. Such conditions are naturally satisfied, at least approximately, in conventional fiber
transmission systems, where, for example, an SMF may be paired with a DCF as conjugating
counterparts. The symmetry is in the scaled sense, because the lengths of the fibers and the
corresponding fiber parameters, including the fiber loss coefficients and dispersions, as well
as the Kerr and Raman nonlinear coefficients, are all in proportion, and the proportional ratio
may not be 1. The symmetry is called translational, because the curves of signal power varia-
tion along the fiber keep the similar shape, albeit scaled, when translated from the left to the
right side of OPC, as depicted in Fig. 1, so do the curves of any above-mentioned fiber pa-
rameter if plotted against the fiber length. The fundamental discovery is that two fiber lines
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Fig. 1. Two fiber spans in translational symmetry about an optical phase conjugator. The
shaded areas represent two typical fiber segments that are in scaled translational symmetry
about the conjugator.

translationally symmetric about the OPC are able to cancel each other’s nonlinearities up to
the first-order perturbation. To understand the principle, imagine two fiber lines with opposite
nonlinear coefficients but identical linear parameters of dispersion and loss/gain. It turns out
that the nonlinear effects of the two are compensated up to the first-order perturbation when
they are used in cascade. For an optical signal of the form,

E(z, t) = A(z, t)exp

[
i
∫ z

β0(ζ )dζ − iω0t

]
, (7)

which may be of a single time-division multiplexed channel or a superposition of multiple
WDM channels, the propagation in an optical fiber of length L is governed by the NLSE [17,
25],

∂A(z, t)
∂ z

+
+∞

∑
k=2

ik−1βk(z)
k!

(
∂
∂ t

)k

A(z, t)+
α (z)

2
A(z, t) =

iγ(z)|A(z, t)|2A(z, t)+ i
[
g(z, t)⊗|A(z, t)|2]A(z, t), (8)

∀ z ∈ [0,L], in the retarded reference frame where the origin z = 0 moves along the fiber at the
signal group-velocity. α (z) is the loss/gain coefficient of the fiber, {βk(z)}k≥2 are its dispersion
parameters [26], γ(z) is the Kerr nonlinear coefficient of the fiber, g(z, t) is the impulse-response
of the Raman gain, and ⊗ denotes functional convolution [17, 25]. Note that the fiber param-
eters are allowed to be z-dependent, that is, they may vary along the length of the fiber. Had
there been no nonlinearity, γ(z) = g(z, ·) ≡ 0, Eq. (8) would reduce to,

∂A(z, t)
∂ z

+
+∞

∑
k=2

ik−1βk(z)
k!

(
∂
∂ t

)k

A(z, t)+
α (z)

2
A(z, t) = 0, (9)

which could be solved analytically using, for example, the method of Fourier transform. A
signal Ã(z1,ω) at z = z1 would be transformed into Ã(z2,ω) = H(z1,z2,ω)Ã(z1,ω) at z2 ≥ z1,
where H(z1,z2,ω) is defined as,

H(z1,z2,ω) def= exp

[
i
+∞

∑
k=2

ωk

k!

∫ z2

z1

βk(z)dz− 1
2

∫ z2

z1

α (z)dz

]
. (10)
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In the time domain, the signals are related linearly as A(z2, t) = P(z1,z2)A(z1, t), with the linear
operator P(z1,z2) given by,

P(z1,z2)
def= F−1H(z1,z2,ω)F , (11)

namely, P(z1,z2) is the concatenation of three linear operations: Firstly Fourier transform is
applied to convert a temporal signal into a frequency signal, which is then multiplied by the
transfer function H(z1,z2,ω), finally the resulted signal is inverse Fourier transformed back
into the time domain. In terms of the impulse response,

h(z1,z2, t)
def= F−1[H(z1,z2,ω)], (12)

P(z1,z2) may also be represented as,

P(z1,z2) = h(z1,z2, t)⊗, (13)

namely, the action of P(z1,z2) on a time-dependent function is to convolve the function with the
impulse response. All linear operators P(z1,z2) with z1 ≤ z2, also known as propagators, form
a semigroup [27] for the linear evolution Eq. (9). However, the existence of nonlinear terms in
Eq. (8) makes the equation much more difficult to solve. Fortunately, when the signal power
is not very high so that the nonlinearity is weak and may be treated as perturbation, the output
from a nonlinear fiber line may be represented by a linearly dispersed version of the input, plus
nonlinear distortions expanded in power series of the nonlinear coefficients [28].

In practical transmission lines, although the end-to-end response of a long link may be highly
nonlinear due to the accumulation of nonlinearity through many fiber spans, the nonlinear per-
turbation terms of higher orders than the first are usually negligibly small within each fiber
span. Up to the first-order perturbation, the signal A(z2, t) as a result of nonlinear propagation
of a signal A(z1, t) from z1 to z2 ≥ z1, may be approximated using,

A0(z2, t) = P(z1,z2)A(z1, t), (14)

A1(z2, t) =
∫ z2

z1

P(z,z2)
{

iγ(z)|A0(z, t)|2A0(z, t)

+ i
[
g(z, t)⊗|A0(z, t)|2

]
A0(z, t)

}
dz, (15)

where A(z2, t) ≈ A0(z2, t) amounts to the zeroth-order approximation which neglects the fiber
nonlinearity completely, whereas the result of first-order approximation A(z2, t) ≈ A0(z2, t)+
A1(z2, t) accounts in addition for the lowest-order nonlinear products integrated over the fiber
length. The term A1(·, t) is called the first-order perturbation because it is linearly proportional
to the nonlinear coefficients γ(·) and g(·, t). Now back to the consideration of two fiber lines
with opposite nonlinear coefficients but identical linear parameters of dispersion and loss/gain.
It is obvious from Eqs. (10-15) that the two fiber lines induce opposite first-order nonlinear
distortions to otherwise the same linear signal propagation (zeroth-order approximation). If
the overall dispersion of each line is compensated to zero and the signal loss is made up by
linear optical amplifiers, then the two lines may be used in cascade, and the same perturbation
argument may be applied to the resulting two-span transmission line to show that the fiber
nonlinearity is annihilated up to the first-order perturbation. More generally, one fiber may
have its linear parameters scaled by a common factor and its nonlinear coefficients scaled by
another factor, then the length of the fiber may be scaled inversely proportional to the linear
parameters, and the signal power may be adjusted accordingly to yield the same strength of
nonlinear interactions. This is coined scaled nonlinearity [15, 16, 17], which enables nonlinear
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compensation among fibers of different types. The problem is that an optical fiber with negative
nonlinear coefficients may be only fictitious. It does not exist naturally.

For a fictitious fiber of length L and with parameters as those in Eq. (8), the Kerr nonlinear
coefficient γ(·) is negative-valued, and the Raman gain is reversed in the sense that it induces
optical power flow from lower to higher frequencies, which obviously will not happen normally.
Fortunately, such fictitious fiber may be simulated by an ordinary fiber with the help of OPC.
An ordinary fiber of length L/R may be found with parameters α ′, {β ′

k}k≥2, γ′, g′ satisfying the
following rules of scaling,

α ′(z) = Rα (Rz), (16)

β ′
k(z) = (−1)k−1Rβk(Rz), ∀ k ≥ 2, (17)

γ′(z) = −Qγ(Rz), (18)

g′(z, t) = −Qg(Rz, t), ∀ t ∈ (−∞,+∞), (19)

∀ z ∈ [0,L/R], where R > 0, Q > 0 are scaling factors. In this ordinary fiber, the NLSE of signal
propagation is,

∂A′(z, t)
∂ z

+
+∞

∑
k=2

ik−1β ′
k(z)

k!

(
∂
∂ t

)k

A′(z, t)+
α ′(z)

2
A′(z, t) =

iγ′(z)|A′(z, t)|2A′(z, t)+ i
[
g′(z, t)⊗|A′(z, t)|2]A′(z, t), (20)

∀ z ∈ [0,L/R], that is,

∂A′(z, t)
R∂ z

+
+∞

∑
k=2

(−i)k−1βk(Rz)
k!

(
∂
∂ t

)k

A′(z, t)+
α (Rz)

2
A′(z, t) =

−iQR−1γ(Rz)|A′(z, t)|2A′(z, t)− iQR−1 [
g(Rz, t)⊗|A′(z, t)|2]A′(z, t), (21)

∀ z ∈ [0,L/R]. After a substitution,

A′(z, t) =
√

R/QA∗(Rz, t), (22)

then a change of variable Rz → z, and finally taking the complex conjugate of the whole equa-
tion, Eq. (21) becomes mathematically identical to Eq. (8). Equation (22) is actually the scaling
rule for the signal amplitudes. The physical implication is that, if a signal A(0, t) is injected
into the fictitious fiber and the complex conjugate signal

√
R/QA∗(0, t) is fed to the ordinary

fiber, then the signal at any point z ∈ [0,L/R] in the ordinary fiber is
√

R/QA∗(Rz, t), which is
the complex conjugate of the signal at the scaled position Rz in the fictitious fiber. In particu-
lar, the output signals are A(L, t) and

√
R/QA∗(L, t) from the fictitious and the ordinary fibers

respectively. With signal power scaled by the factor R/Q, the ordinary fiber with two phase
conjugators installed at its two ends performs exactly the same nonlinear signal transformation
as the fictitious fiber. In practice, the phase conjugator at the output end of the ordinary fiber
may be omitted, as most applications would not differentiate between a signal and its complex
conjugate.

The analysis has convinced us that OPC may be used to compensate fiber nonlinearities be-
tween two transmission lines that are in scaled translational symmetry. Both the Kerr and Ra-
man nonlinearities may be suppressed simultaneously if a proportional relation is maintained
between the γ and g parameters as in the scaling rules Eq. (18) and Eq. (19). When Eqs. (18)
and (19) can not be fulfilled simultaneously, either the Kerr or the Raman nonlinearity may be
primarily targeted for compensation depending upon the actual application. For a translational
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symmetry between two fibers with opposite dispersions, the scaling rule Eq. (16) requires the
same sign for the loss/gain coefficients of the two fibers, which is a convenient condition to
meet by the natural fiber losses. This is in contrast to the mirror symmetry between two fiber
segments that requires an amplifying segment correspond to a lossy one and vice versa. Fibers
may be designed and fabricated with the requirements of scaled symmetry taken into consider-
ation. For a given piece of fiber, the loss coefficient may be intentionally increased to meet the
scaling rule. The extra loss may be induced by, for example, macro-bending [29] the fiber or
writing long-period Bragg gratings into the fiber. Macro-bending may be built in a lumped fiber
module having the fiber coiled tightly with a suitable radius. Also discrete fiber coils or Bragg
gratings may be implemented periodically along the length of a fiber to approximate a continu-
ous uniform loss coefficient. More sophisticatedly, Raman pumps may be employed to induce
gain or loss to the optical signals depending upon the pump frequencies being higher or lower
than the signal band, so to alter the effective gain/loss coefficient of the fiber. Even though it is
rather difficult to change the dispersion of a given fiber, OPC is capable of shifting the center
frequency of the signal band, which can fine-tune the effective dispersion at the center of the
signal band, so long as the fiber has a non-zero dispersion slope. Even though most fibers are
made of similar materials with similar nonlinear susceptibilities, their guided-wave nonlinear
coefficients measured in W−1km−1 could be quite different due to the wide variation of modal
sizes. As a consequence, the signal powers in two conjugate fibers may differ by several dB
as required by the scaling rule Eq. (22) for translational symmetry. Alternatively, by taking ad-
vantage of the additivity of first-order nonlinear perturbations, it is possible to adjust the signal
powers in different fiber spans only slightly, such that one span of a highly-nonlinear type may
compensate several fiber spans of another type with weaker nonlinearity. This method may be
called “one-for-many” (in terms of fiber spans) nonlinearity compensation.

It should be noted that the suitability of compensating nonlinearities among lossy fibers does
not exclude the method of translational symmetry from applying to systems with amplifying
fibers due to Raman pumping [18, 20, 21, 22, 30] or rare-earth-element doping [19]. The trans-
lational method applies to these systems equally well, provided that an amplifying fiber is
brought into translational symmetry with respect to another fiber with gain. In fact, if two
fibers with their intrinsic loss coefficients satisfying the scaling rule Eq. (16), then the power of
the Raman pumps (forward or backward) to them may be adjusted properly to yield effective
gain/loss coefficients satisfying the same rule of Eq. (16). In particular, Raman pumped DCFs
[31, 32] may be conveniently tuned translationally symmetric to a Raman pumped transmis-
sion fiber. For systems suffering considerable nonlinear penalties originated from long EDFAs
[33], the penalties may be largely suppressed by arranging the amplifiers into conjugate pairs
with scaled translational symmetry about the OPC. The nonlinear and gain coefficients as well
as the signal amplitudes in the amplifying fibers should obey the scaling rules. If the disper-
sions of the amplifying fibers are not negligible, they should be designed to satisfy the scaling
rules as well. Finally, it is also necessary to note the limitation of nonlinearity compensation
using scaled translational symmetry. That is, the method can only compensate the first-order
nonlinear interactions among the optical signals. The higher-order nonlinear products are not
compensated, nor is the nonlinear mixing between transmitted signals and amplifier noise. The
accumulation of uncompensated higher-order nonlinearities and nonlinear signal-noise mixing
would eventually upper-bound the amount of signal power permitted in the transmission fibers,
so to limit the obtainable signal-to-noise ratio, and ultimately limit the product of data capacity
and transmission distance.
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3. Optimal setups of fiber-optic transmission lines

Having established the basic principles of dispersion equalization and nonlinearity compensa-
tion using OPC and scaled translational symmetry, we shall now discuss practical designs of
fiber systems for long-distance transmissions, with realistic (commercially available) DCFs and
transmission fibers that are optimally configured according to the basic principles of simultane-
ous compensation of dispersion and nonlinearity. A long-distance transmission line may consist
of many fiber spans, each of which may have transmission and dispersion-compensating fibers.
Two fibers with opposite (second-order) dispersions may be tuned translationally symmetric
to each other about a phase conjugator. For optimal nonlinearity compensation, the fiber pa-
rameters and the signal amplitudes should be adjusted to meet the conditions of translational
symmetry, often approximately, not exactly, because of the dispersion slopes [17]. In particular,
if one fiber span has a positive-dispersion (+D) fiber followed by a negative-dispersion (-D)
fiber, then the counterpart span has to place the -D fiber before the +D fiber, in order to achieve
an approximate translational symmetry between the two fiber spans. When two fiber spans are
translationally symmetric about an optical phase conjugator, one span is called the translational
conjugate to the other about the OPC. As argued above, OPC is able to equalize dispersion
terms of even orders. So the two parts of a transmission line with OPC in the middle should
have the same amount of b2 and b4 but exactly opposite b3, or both have b3 = 0, where the b-
parameters are defined in Eq. (3). In a more restrictive implementation, each fiber span consists
of +D and -D fibers with the total dispersion slope compensated to zero. The +D and -D fibers in
each span need not to match their dispersions and slopes simultaneously. It is sufficient to fully
compensate b3, while leaving residual even-order terms b2 and b4. Two conjugate spans would
be configured as +D followed by -D fibers and -D followed by +D fibers respectively. The two
conjugate spans may not be exactly the same in length, and they may have different integrated
dispersion terms of the even orders. The two types of fiber spans may be mixed and alternated
on each side of the OPC, so that the two sides have the same total b2 and b4. Transmission
lines with such dispersion map are convenient to plan and manage. However, it is worth noting
that the present method of simultaneous compensation of dispersion and nonlinearity applies
to other dispersion maps as well, where the period of dispersion compensation may be either
shorter [34] or longer [35] than the amplifier spacing, or the fiber spans may vary widely in
length and configuration. Regardless of the dispersion map, wide-band dispersion compensa-
tion could be achieved in a transmission line with middle-span OPC so long as the dispersion
terms of the two sides of OPC satisfy Eq. (5), and pairs of conjugate fiber spans could have
their nonlinearities cancelled up to the first-order perturbation as long as the scaling rules Eqs.
(16-19) and Eq. (22) are well observed.

As a result of power loss, the nonlinear response of a long piece of fiber becomes insensitive
to the actual fiber length so long as it far exceeds the effective length [2] defined as Leff = 1/α ,
where α is the loss coefficient. So fiber spans consisting of the same types of fibers but with
different lengths could contribute the same amount of nonlinearity if the input powers are the
same. That all fiber spans contribute the same nonlinearity makes it possible for various spans
with different lengths to compensate each other’s nonlinear effects. It is straightforward to ex-
tend the same argument to fiber spans with scaled parameters and signal powers. The conclusion
is that scaled fiber spans could induce approximately the same amount of nonlinear distortion
to optical signals, which is insensitive to the varying span lengths, provided that the length of
each fiber span is much longer than its own effective length defined by the inverse of the loss
coefficient. The main advantage is that the fiber spans may be arbitrarily paired for nonlinearity
compensation regardless of their actual lengths. This is good news to terrestrial and festoon
systems, where the span-distance between repeaters may vary according to the geographical
conditions. When the dispersion of each fiber span is not fully compensated, it is desirable to
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fine-tune (slightly elongate or shorten) the lengths of transmission fibers or DCFs such that all
spans have the same amount of residual dispersion. As a consequence, fiber spans of different
lengths and possibly consisting of different types of fibers become truly equivalent in two all-
important aspects of signal propagation: nonlinearity and accumulated dispersion. Certainly, if
the above-mentioned method of “one-for-many” nonlinearity compensation is employed, the
residual dispersion of the highly nonlinear span should also be multiplied by the same inte-
ger factor. Last but not least, when scaling fiber parameters and signal amplitudes to have two
fiber spans inducing the same or compensating nonlinear effects, it is only necessary to make
sure that the scaling rules Eqs. (16-19) and Eq. (22) are fulfilled in portions of transmission
fibers experiencing high levels of signal power. Elsewhere, the scaling rules may be loosened
or neglected when the signal power is low.

Despite the translational symmetry between the constituent fibers of two conjugate spans,
it is advantageous to order many conjugate spans in a mirror-symmetric manner about the
OPC, especially when all the spans are not identical. The local nonlinearity within each span
is usually weak such that the nonlinear perturbations of higher orders than the first may be
neglected, even though a strong nonlinearity may be accumulated through many fiber spans.
Within the applicability of first-order perturbation for approximating the nonlinearity of each
fiber span, it may be argued using mathematical induction that the nonlinearity of multiple
spans in cascade is also compensated up to the first-order perturbation, because of the mirror-
symmetric arrangement of fiber spans about the OPC. The spans may be labelled from left to
right by −N, · · · ,−2,−1,1,2, · · · ,N, with OPC located between span −1 and span 1. And one
may denote by z0 and z′0 the beginning and end positions of the section of OPC, while labelling
the beginning and end points of span n by zn and z′n, where z′n = zn+1, ∀ n ∈ [−N,N −1]. There
may be three variations for a mirror-symmetric configuration of pairs of fiber spans in scaled
translational symmetry, depending upon whether the dispersion in each span is compensated to
zero, and if not, how the dispersion is managed. In the first case, all spans are compensated to
zero dispersion, as shown in Fig. 2 for the case of N = 3. It is required that, ∀ n ∈ [1,N], spans
−n and n should be conjugate, that is translationally symmetric, to each other. The first-order
nonlinear perturbations of spans 1 and −1 cancel each other due to the translational symmetry
and the OPC, so the optical path from z−1 to z′1 is equivalent to an ideal linear transmission line
with OPC in the middle, if higher-order nonlinear perturbations are neglected. It follows that
the signal input to span 2 at z2 is approximately the complex conjugate of that input to span
−2 at z−2, apart from the nonlinear perturbation due to span −2. So the translational symmetry
between spans 2 and −2 about the OPC annihilates their nonlinearities up to the first-order
perturbation. Using mathematical induction, assuming that the optical path from z−n to z′n,
1 < n < N, is equivalent to an ideal linear transmission line with OPC in the middle, then spans
n+1 and −n−1 see input signals at zn+1 and z−n−1 that are approximately complex conjugate
to each other, so their first-order nonlinear effects cancel each other out due to the translational
symmetry and OPC. The optical path from z−n−1 to z′n+1 is linearized and equivalent to an ideal
linear transmission line with OPC in the middle. This inductive argument applies as long as the
accumulation of nonlinear perturbations of higher-orders than the first is still negligible and the
nonlinear mixing of amplifier noise into signal hasn’t grown significantly.

In the second case, the fiber spans may have non-zero residual dispersion, as shown in Fig. 3
for the case of N = 3. It is required that, ∀ n ∈ [1,N], spans −n and n should be in a translational
symmetry approximately, while the residual dispersion of span n−1 should be approximately
the same as span −n, ∀ n ∈ [2,N]. Pre- and post-dispersion compensators are employed to
equalize the residual dispersion. The pre-dispersion may set the total dispersion to zero imme-
diately before OPC, and a dispersion conditioner at the site of OPC ensures that the signal input
to span 1 is approximately the complex conjugate of that input to span −1, apart from the non-
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Fig. 2. A mirror-symmetric configuration of pairs of fiber spans in scaled translational sym-
metry, with the dispersion in each span compensated to zero. Top: schematic arrangement
of fibers and amplifiers with respect to OPC. Middle: map of signal power P(z) along the
propagation distance z. Bottom: map of accumulated dispersion b2(z) along the propaga-
tion distance z.

linear perturbation due to span −1. Figure 3 shows a dispersion conditioner placed immediately
after OPC, with the amount of dispersion equal to the residual dispersion in span −1. The three
thicker line segments in the dispersion map represent the effects of the pre- and post-dispersion
compensators as well as the dispersion conditioner. So the transmission line has been designed
such that the accumulated dispersions from z−n to zn, n∈ [1,N], are fully compensated by virtue
of OPC, and for each n ∈ [1,N], the fiber span from z−n to z′−n is translationally symmetric to
the fiber span from zn to z′n, namely, the parameters of the two fiber spans satisfy the scaling
rules of Eqs. (16-19), at least approximately. Leaving aside the fiber nonlinearity, such disper-
sion map ensures that the optical signals at z−n and zn are complex conjugate to each other, then
the signal amplitudes may be properly scaled such that Eq. (22) is also satisfied. As a result,
all conditions are fulfilled for the fiber spans from z−n to z′−n and from zn to z′n to compensate
their fiber nonlinearities up to the first-order perturbation, for each n ∈ [1,N]. The first-order
nonlinear perturbations of spans 1 and −1 cancel each other due to the translational symmetry
and OPC, so the optical path from z−1 to z′1 is equivalent to an ideal linear transmission line
with OPC in the middle and some accumulated dispersion at z′1 due to span 1. Since this amount
of dispersion is equal to that of span −2, the signal input to span 2 at z2 is approximately the
complex conjugate of that input to span −2 at z−2, apart from the nonlinear perturbation due
to span −2. So the translational symmetry between spans 2 and −2 about the OPC annihilates
their nonlinearities up to the first-order perturbation. Using mathematical induction, assuming
that the optical path from z−n to z′n, 1 < n < N, is equivalent to an ideal linear transmission line
with OPC in the middle and accumulated dispersion at the right end due to span n, which is the
same amount of residual dispersion as of span −n− 1, then spans n + 1 and −n− 1 see input
signals at zn+1 and z−n−1 that are approximately complex conjugate to each other, so their first-
order nonlinear effects cancel each other out due to the translational symmetry and OPC. The
optical path from z−n−1 to z′n+1 is linearized and equivalent to an ideal linear transmission line
with OPC in the middle and the dispersion of span n + 1 at the right end. In the third case, the
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Fig. 3. A mirror-symmetric configuration of pairs of fiber spans in scaled translational sym-
metry, with non-zero residual dispersion in the spans. There are pre- and post-dispersion
compensators (DCs), as well as a dispersion conditioner immediately after OPC. Top:
schematic arrangement of fibers and amplifiers with respect to OPC. Middle: map of signal
power P(z) along the propagation distance z. Bottom: map of accumulated dispersion b2(z)
along the propagation distance z.

fiber spans still have non-zero residual dispersion, but there is no dispersion conditioner placed
immediately before or after OPC to compensate the residual dispersion of span −1. Instead,
span 1 may play the role of the dispersion conditioner, and ∀ n ∈ [1,N], spans n and −n need
to have the same amount of residual dispersion, while spans n and −n+1, ∀ n ∈ [2,N], should
be in a scaled translational symmetry approximately to have their nonlinearities compensated
up to the first-order perturbation. This is in contrast to the requirement of the second case. The
configuration is shown in Fig. 4 for the case of N = 3, where the two thicker line segments in
the dispersion map represent the effects of the pre- and post-dispersion compensators. It may
be shown using the same inductive argument that the transmission line is largely linearized,
except that the nonlinear effects of spans 1 and −N, if any, are left uncompensated.

DCFs are widely used in modern fiber-optic transmission systems. A DCF may be coiled into
a compact module at the amplifier site, or cabled as part of the transmission line. The perfor-
mance of both types of DCFs has been greatly improved recently. There are now low-loss DCFs
capable of (approximately) slope-matched dispersion compensation for various transmission
fibers with different ratios of dispersion to dispersion-slope [3, 4], although there are always
residual second-order and fourth-order dispersions after the slope is equalized [5, 6, 7]. For
SMFs, namely standard single-mode fibers, the ratio of dispersion (D ≈ 16 ps/nm/km @1550
nm) to dispersion slope (S ≈ 0.055 ps/nm2/km @1550 nm) is large, so that the relative change
of dispersion is small across the signal band (≈ 40 nm in the C-band). The so-called reverse
dispersion fibers (RDFs) are designed to compensate simultaneously the dispersion and disper-
sion slope of the SMFs. An RDF is not an ideal translational conjugate to an SMF, because their
dispersion slopes do not obey the scaling rule in Eq. (17). However, their dispersions satisfy the
corresponding scaling rule in Eq. (17) approximately, with only small deviations across the en-
tire signal band (C or L). Therefore, a span having an SMF followed by an RDF on the left side
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Fig. 4. A mirror-symmetric configuration of pairs of fiber spans in scaled translational sym-
metry, with non-zero residual dispersion in the spans. There are pre- and post-dispersion
compensators (DCs) but no dispersion conditioner at the site of OPC. Top: schematic ar-
rangement of fibers and amplifiers with respect to OPC. Middle: map of signal power P(z)
along the propagation distance z. Bottom: map of accumulated dispersion b2(z) along the
propagation distance z.

of OPC may be brought into a translational symmetry, approximately, to a span having an RDF
followed by an SMF on the right side of OPC, and vice versa. The indication is that OPC may
be installed in the middle of conventional transmission lines with no or minimal modifications
to achieve simultaneous wide-band dispersion compensation and nonlinearity suppression. The
only requirements are that the signal power levels should be properly set in the fiber spans, and
the SMFs/RDFs should be suitably arranged, to meet the scaling rules Eqs. (16-19) and Eq. (22)
approximately for the translational symmetry between each pair of conjugate fiber spans, and
to order the conjugate pairs of spans mirror-symmetrically about the OPC. It is noted that a re-
cent paper [36] has independently proposed the combination of slope-matching DCF and OPC
to suppress simultaneously the third-order dispersion and sideband instability due to fiber non-
linearity. However, the work [36] was limited to a single-channel system, considered only the
suppression of sideband instability as an intra-channel nonlinear effect, and did not recognize
the importance of scaling the nonlinearity (especially the signal power) in different fibers. By
contrast, our method applies to wide-band WDM systems as well and is capable of suppress-
ing both intra- and inter-channel nonlinear interactions, being them Kerr- or Raman-originated.
Most importantly, we emphasize the importance of the scaling rules Eqs. (16-19) and Eq. (22)
for optimal nonlinearity compensation.

Several non-zero dispersion-shifted fibers (NZDSFs) have also been developed for long-
distance high-capacity transmissions. These fibers have reduced but non-zero dispersions across
the operating band (C or L). Depending upon the sign of the dispersion (D in units of
ps/nm/km), there are positive NZDSFs (+NZDSFs) and negative NZDSFs (-NZDSFs), but their
dispersion-slopes are always positive. It becomes possible to bring a +NZDSF and a -NZDSF
into a nearly perfect translational symmetry [37], because their oppositely signed dispersions
and positively signed dispersion-slopes meet the exact requirements of the scaling rules in Eq.
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(17). The dispersion-slope of the NZDSFs may be compensated by negative-slope DCFs. The
DCFs do not have to (could not indeed) compensate the dispersion and dispersion-slope simul-
taneously for both the positive and negative NZDSFs. It is sufficient to equalize the accumu-
lated dispersion-slope to zero on each side of the OPC, then the two sides may cancel their
accumulated non-zero dispersions of the second and the fourth orders through OPC. To form
a nonlinearity-compensating translational symmetry between a +NZDSF span and a -NZDSF
span, the accumulated dispersion should be properly managed to ensure that the input signals
to the +NZDSF and -NZDSF fibers are complex conjugate to each other, which is a necessary
condition for nonlinearity cancellation. As long as these requirements are satisfied, there is re-
ally no limit as to how much residual (second-order) dispersion may be accumulated in each
fiber span as well as on each side of the OPC. It may be difficult to find a fiber translationally
symmetric to the slope-compensating DCF, because of its high negative dispersion-slope. How-
ever, we note that it is only necessary to have a scaled translational symmetry formed between
portions of fibers carrying high signal power, elsewhere, such as in the slope-compensating
DCFs, the scaling rules may be neglected when the signal power is low and the nonlinearity
is insignificant. If the slope-compensating DCFs are cabled, they may be placed near the end
of fiber spans where the signal power is low. Or if the DCFs are coiled into modules and co-
located with the amplifiers, the signal power inside may be controlled at a low level to avoid
nonlinearity. To minimize the noise-figure penalty in such DCF modules, the DCF may be dis-
tributively Raman pumped [18, 31, 32], or earth-element doped and distributively pumped [19],
or divided into multiple segments and power-repeated by a multi-stage EDFA. The conclusion
is that the method of OPC-based simultaneous compensation of dispersion and nonlinearity is
perfectly suitable for transmission systems employing NZDSFs, and highly effective nonlin-
earity suppression may be expected in such systems due to the nearly perfect translational sym-
metry between the +NZDSFs and -NZDSFs. Finally, in the limit of vanishing (second-order)
dispersion at the center of the signal band, the +NZDSF and -NZDSF converge to the same
dispersion-shifted fiber (DSF), which is translationally symmetric to itself. Two identical DSF
spans on the two sides of OPC are in perfect translational symmetry to cancel their nonlinearity
up to the first-order perturbation. Again the dispersion-slope may be equalized by a DCF with
negative dispersion-slope, and the residual second-order dispersion may be arbitrarily valued.
Suppressing fiber nonlinearity happens to be highly desired in DSF-based transmission lines,
as DSFs are arguably the most susceptible to nonlinear impairments [2].

Fig. 5. A transmission line consisting of SMFs and slope-matching DCFs.
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4. Simulation results and discussions

To verify the proposed method of simultaneous compensation of dispersion and nonlinear-
ity, we have carried out a series of numerical simulations using a commercial transmission
simulator (VPItransmissionMakerTM, Virtual Photonics Inc.). Reference [17] has presented an
example of SMFs and DCF modules with nearly perfect match of dispersion and slope. Here
we consider a practical setup of SMFs and cabled DCFs with residual dispersion, as shown
in Fig. 5. One type of span consists of 50 km SMF followed by 50 km DCF. The SMF has
loss coefficient α = 0.2 dB/km, effective mode area Aeff = 80 µm2, and dispersion parameters
β2 =−20.47 ps2/km, β3 = 0.1238 ps3/km at 193.1 THz. The corresponding dispersion D = 16
ps/nm/km and slope S = 0.055 ps/nm2/km. The DCF mimics a commercial RDF product [7],
namely a reverse dispersion fiber, with parameters (α ′,A′

eff,β
′
2,β ′

3) = (0.2,30,18,−0.1238), in
the same units as for the SMF. The Kerr nonlinear index of silica n2 = 2.6×10−20m2/W. Prac-
tical DCFs often have a loss coefficient that is slightly higher than the SMFs, so the optimal
design of the DCFs would have a dispersion |DDCF| slightly higher than |DSMF| proportionally
according to the scaling rules Eq. (16) and Eq. (17). The conjugate span has 39.35 km DCF
followed by SMF of the same length. Due to the smaller modal area, a lower power is injected
into the DCF to generate the compensating nonlinearity, in accordance with the scaling rule for
signal amplitudes in Eq. (22). The shortened span length is to balance the noise figure between
the two types of spans. The two span types are also intermixed on each side of the OPC to bal-
ance the residual dispersions. Alternatively, all fiber spans may be the same in length, but the
signal power injected to the DCF+SMF spans should be 3/8 of that injected to the SMF+DCF
spans, and the DCF+SMF spans would add more noise to the optical signal than the SMF+DCF
spans. It is noted that the scaling rules are not obeyed at all in the second part of each span, that
is, in the DCFs of SMF+DCF spans and in the SMFs of DCF+SMF spans. Fortunately, the sec-
ond part of each span experiences low signal power, in which the nonlinear effect is negligible.
Back to the setup of Fig. 5, where all EDFAs have the same noise figure of 5 dB, each fiber loop
recirculates five times, that gives 1000 km worth of fiber transmission on each side of the OPC.
The input are four 40 Gb/s WDM channels, return-to-zero (RZ) modulated with peak power
20 mW, channel spacing 200 GHz. Each RZ pulse generator consists of a continuous-wave
laser followed by a zero-chirp modulator, which is over-driven to produce a pulse train with the
amplitude proportional to cos

(π
2 sinπΩt

)
, where Ω is the bit rate. Therefore the duty cycle of

the pulses is 33%, if defined as the ratio of pulse full-width-half-maximum to the time interval
between adjacent bits. The optical multiplexer and demultiplexer consist of Bessel filters of the
7th order with 3dB bandwidth 80 GHz. The input data are simulated by pseudo random binary
sequences of order 7, and the simulation time window covers 256 bits. The photo-detector is
with responsivity 1.0 A/W and thermal noise 10.0 pA/

√
Hz. The electrical filter is 3rd order

Bessel with 3dB bandwidth 28 GHz. Figure 6 shows the received eye diagrams of the 2nd
DEMUX channel. The top-right diagram shows the effect of nonlinearity compensation. For
comparison, the result of a fictitious transmission where no fiber has any nonlinear effect is
shown on the top-left of Fig. 6. To confirm that the suppression of nonlinearity is indeed due
to the translational symmetry of conjugate spans about the OPC, the two diagrams at the bot-
tom of Fig. 6 show simulation results of altered configurations: one setup has the same length
of 50 + 50 km for and the same input power level to both the SMF+DCF and the DCF+SMF
spans, the other has on both sides of OPC identical 100-km SMF+DCF spans carrying the same
signal power. Both altered setups suffer from severe nonlinear impairments.

For an example system using NZDSFs, we simulated a transmission line consisting of twenty
100-km fiber spans with OPC in the middle, as shown in Fig. 7, where each side of the OPC
has a fiber loop circulated five times. In each circulation, the optical signals go through 100 km
-NZDSF transmission followed by a two-stage EDFA with 10 km DCF in the middle, then 100
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Fig. 6. Received eye diagrams of the 2nd DEMUX channel. Top row: transmission results
of the setup in Fig. 5. Top-left: fiber nonlinearity is OFF, the signal is only impaired by
amplifier noise. Top-right: fiber nonlinearity is ON, the signal distortion is only increased
slightly. Bottom row: transmission results when the setup is modified, and the fiber non-
linearity is always ON. Bottom-left: fiber lengths of and input powers to the two types of
spans are exactly the same. Bottom-right: all fiber spans are identical in length and input
signal power as well as the ordering of fibers (SMF followed by DCF).

km +NZDSF transmission followed by the same two-stage EDFA and DCF. The +NZDSF has
loss coefficient α = 0.2 dB/km, dispersion D = +4 ps/nm/km and slope S = 0.11 ps/nm2/km
at 193.1 THz. The effective mode area is Aeff = 70 µm2. The -NZDSF differs only by D = −4
ps/nm/km. The Kerr nonlinear index of silica n2 = 2.6× 10−20m2/W. The two-stage EDFA
has 11 + 15 = 26 dB gain in total to repeat the signal power. The noise figure of each stage
is 5 dB. The DCF has α = 0.6 dB/km, D = −40 ps/nm/km, S = −1.1 ps/nm2/km, Aeff = 25
µm2, but nonlinearity neglected. The transmitting and receiving ends are the same as in the
above SMF/DCF transmission. Input to the system are the same four-channel WDM signals,
and the peak power of the 40 Gb/s RZ pules is also the same 20 mW. With their nonlinear
effects neglected, the DCFs do not participate directly in nonlinearity compensation. Neverthe-
less, their compensation of the dispersion-slope of the NZDSFs enables the OPC to effectively
compensate the dispersion over a wide frequency band, and helps to condition the optical sig-
nals such that the inputs to two conjugate NZDSFs are mutually complex conjugate. Note that
the +NZDSF and -NZDSF spans are alternated on each side of the OPC to balance the accumu-
lated dispersion between the two sides. Also note that the first -NZDSF span on the right side
of OPC is designed to compensate the nonlinearity of the last +NZDSF span on the left side,
and the second span on the right (+NZDSF) is to compensate the second last span (-NZDSF)
on the left, so on and so forth. It is important for the +NZDSF spans to be well dispersion-
compensated, so to ensure that the input signals to the two conjugate spans of a translationally
symmetric pair are complex conjugate to each other, which is a necessary condition for non-
linearity cancellation. However, there is no limit as to how much residual dispersion may be in
the -NZDSF spans. Alternatively, each fiber span may be a concatenation of + and - NZDSFs.
One type of span may have a +NZDSF followed by a -NZDSF, then the conjugate span would
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Fig. 7. A transmission line consisting of +NZDSFs, -NZDSFs, and DCFs compensating the
dispersion slope.

consist of the same fibers reversely ordered. Consequently, all spans may use the same DCF for
slope-compensating, and all accumulate the same dispersions of even orders. Figure 8 shows
the received eye diagrams of the 2nd DEMUX channel. The top row shows the results of non-
linear transmission and the comparing fictitious transmission without fiber nonlinearity through
the setup of Fig. 7. The effectiveness of nonlinear compensation is remarkable. By contrast, the
bottom row of Fig. 8 shows severe degradations in the transmission performance, when all -
NZDSFs are replaced by +NZDSFs, so that the transmission line consists of identical +NZDSF
spans with DCFs compensating both the dispersion and the dispersion-slope. The highly ef-
fective nonlinearity compensation is expected as a result of the nearly perfect translational
symmetry between the +NZDSF and -NZDSF spans. Furthermore, a nonlinearity-suppressed
transmission line should manifest behaviors of a linear system to some extent. Typical linear
behaviors include scalability and cascadability. Namely, using the same fiber spans and simply
by raising the signal power, it is possible to further the transmission distance by increasing
the number of fiber spans before/after the OPC (scaling up), or by cascading several OPC-
compensated transmission lines all-optically (without optical to electrical and electrical to op-
tical signal conversions in the middle). Both the scalability and the cascadability are confirmed
via numerical simulations, as shown in Fig. 9, where one eye diagram is for a system with the
number of spans doubled to 40 in total, and the other diagram is obtained when cascading two
identical 20-span transmission lines of Fig. 7. The eye diagrams are still of the 2nd DEMUX
channel.

To test the effectiveness of nonlinear compensation for DSFs, we evaluated numerically a
transmission line consisting of twenty 50-km DSF spans with OPC in the middle, as shown
in Fig. 10. Each span has 50 km DSF and at the end a two-stage EDFA with 5 km DCF in
the middle. The DSF has loss α = 0.2 dB/km, D = 0 ps/nm/km and S = 0.08 ps/nm2/km at
the center frequency 193.1 THz, Aeff = 50 µm2. The Kerr nonlinear index of silica is again
n2 = 2.6× 10−20 m2/W. The two-stage EDFA has 6 + 7 = 13 dB gain in total to repeat the
signal power, and the noise figure of each stage is 5 dB. The DCF has α = 0.6 dB/km, D =−100
ps/nm/km, S = −0.8 ps/nm2/km, Aeff = 25 µm2, but nonlinearity neglected. The transmitting
and receiving ends are still the same as in the above SMF/DCF transmission. However, the four
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Fig. 8. Received eye diagrams of the 2nd DEMUX channel. Top row: transmission results
of the setup in Fig. 7. Top-left: fiber nonlinearity is OFF, the signal is only impaired by
amplifier noise. Top-right: fiber nonlinearity is ON, no extra penalty is visible. Bottom row:
degraded transmission results when all -NZDSFs are replaced by +NZDSFs. Bottom-left:
with OPC. Bottom-right: without OPC, of the 3rd MUX/DEMUX channel.

Fig. 9. Scalability and cascadability of the nonlinearity-suppressed NZDSF transmission
line in Fig. 7. Left: the number of circulations on each side of OPC is doubled to ten times
and the signal power is increased by 3 dB. Right: two identical transmission lines as in Fig.
7 are in cascade all-optically and the signal power is increased by 3 dB. The eye diagrams
are still of the 2nd DEMUX channel.

channels of 40 Gb/s RZ pulses are transmitted at (−350,−150,+50,+250) GHz off the center
frequency, and they are received at (−250,−50,+150,+350) GHz off the center frequency.
Note that the channels are assigned asymmetrically about the center frequency to avoid phase-
matched four-wave mixing (FWM) [2]. The channels may also be unequally spaced to further
reduce the FWM penalty [38, 39]. But assigning channels with unequal spacing increases the
network complexity and may not provide sufficient suppression by itself to the FWM and other
nonlinear effects. In particular, it is ineffective to suppress the effect of cross-phase modulation
(XPM). Nevertheless, when applicable, such legacy methods for nonlinearity suppression may
be combined with our method of OPC-based nonlinearity compensation. The legacy methods
may work to enhance the effectiveness of our method, in the sense that they may render weaker
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nonlinearity in each fiber span, so that the negligence of higher-order nonlinear perturbations
becomes a better approximation. Back to the DSF-based transmission system of Fig. 10, when
the power of the RZ pulses is peaked at 2 mW, Fig. 11 shows the received eye diagrams of the
2nd DEMUX channel. The top-left diagram is obtained when the fiber nonlinearity is turned
OFF, so the signal is only impaired by amplifier noise. The top-right is the received eye diagram
when the fiber nonlinearity is turned ON. The increased penalty due to fiber nonlinearity is
visible but not too large. The eye diagrams at the bottom of Fig. 11 are obtained when the
dispersion of the DCFs changes to D = 0 ps/nm/km while the slope remains, with or without
OPC in the middle of the link. The good transmission performance shown in the bottom-left
diagram verifies the insensitivity of our OPC-based method of nonlinearity compensation to
the amount of residual dispersion in each fiber span, while the bad result on the bottom-right
demonstrates the indispensability of OPC.

Fig. 10. A transmission line consisting of ten fiber spans on each side of OPC, each span
has 50 km DSF and a slope-compensating DCF.

5. Conclusion

In conclusion, we have demonstrated through analytical derivation and numerical simulations
that middle-span OPC enables simultaneous nonlinearity suppression and dispersion com-
pensation over a wide optical band, in realistic setups of transmission lines using commer-
cially available fibers. When the dispersion slope of transmission fibers is equalized by slope-
compensating fibers, the residual dispersions of even orders are compensated by middle-span
optical phase conjugation. More importantly, fiber nonlinearity is found largely suppressed,
when the fiber spans are arranged into conjugate pairs about the phase conjugator, where the
two fiber spans of each pair are translationally symmetric in a scaled sense. A translational
symmetry about the phase conjugator is able to cancel optical nonlinearities of two fiber spans
up to the first-order perturbation, while a mirror-symmetric ordering of the pairs of conjugate
spans about the phase conjugator helps to prevent the accumulation of nonlinearities over a long
transmission distance. One noted merit of this dual-compensation method is that its effective-
ness is fairly insensitive to the amount of residual fiber dispersion after the slope compensation.
The transmission fibers may be standard SMFs, NZDSFs, or even DSFs with dispersion cross-
ing the zero point, and the slope-compensating fibers may be any DCFs with dispersion slopes
opposite to that of the transmission fibers. In view of the recent developments of efficient phase
conjugation based on LiNbO3 waveguides [13] or highly nonlinear fibers [14], optical phase
conjugators hold the promise of multiple functionalities in fiber-optic transmission systems.
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Fig. 11. Received eye diagrams of the 2nd DEMUX channel. Top row: transmission results
of the setup in Fig. 10. Top-left: fiber nonlinearity is OFF, the signal is only impaired by
amplifier noise. Top-right: fiber nonlinearity is ON. Bottom row: transmission results when
the setup in Fig. 10 is modified by setting D = 0 ps/nm/km for the DCFs while keeping
the dispersion slope. Bottom-left: with OPC in the middle of the link. Bottom-right: when
OPC is removed.
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