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Abstract-The design, modeling, and characterization of FET- 
SEED Smart Pixel transceiver arrays fabricated for application 
in optical backplanes are presented. Results of digital and analog 
measurements on 4 x 4 transmitter arrays and 4 x 4 receiver 
arrays, packaged at the printed circuit-board level, will be pre- 
sented. In addition, these results will be compared to device and 
circuit models developed for these optoelectronics. Finally, the 
description of the successful application of these optoelectronics 
to interconnect two printed circuit boards will be described. 

I. INTRODUCTION 

UTURE digital systems such as ATM switching sys- F tems and multiprocessor computer systems will have 
large printed-circuit-board (PCB)-to-printed-circuit-board con- 
nectivity requirements to support the large aggregate through- 
put demands being placed on such systems. Current electronic 
technology may not be capable of supporting both the connec- 
tion densities and the bandwidth required due to limitations of 
multipoint electrical connections over backplane distances [ 11. 
Free-space optical interconnects represent a potential solution 
to the needs of these connection-intensive digital systems. 
When implemented at the PCB-to-PCB level in the form of 
an optical backplane, this technology is potentially capable of 
providing greater connectivity at higher data rates than can be 
supported by current or projected electronic backplanes [2]. 

An optical backplane can be constructed using two- 
dimensional (2-D) arrays of passive, free-space, parallel 
optical-communication channels which optically interconnect 
PCB’s via smart pixels arrays. The smart pixel optoelectronics 
are 2-D device arrays capable of electrical-to-optical (E/O) 
and optical-to-electrical (OB) conversion of digital data. In 
addition to the E/O and O/E conversion, these devices can 
perform processing operations at the backplane level such 
as address recognition or packet routing. By interconnecting 
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PCB’s with 10000 channels per board (10 smart pixel arrays 
per 1000 smart pixels per SPA or 2000 communication 
channels), each channel running at 100 Mb/s will support 
greater than a Tb/s of aggregate data traffic. 

The identification of critical research issues in free-space 
optical systems is being pursued in the form of system 
demonstrator experiments [3]-[7]. With this objective in mind, 
we have designed, modeled, and characterized FET-SEED 
transceiver arrays for application in optical backplane demon- 
strators. This paper is organized as follows. Section I1 discuses 
the transceiver circuit design and fabrication, Section I11 the 
device and circuit models, and Section IV the PCB-level 
packaging of the circuits. Next, Section V will describe 
measured and modeled circuit performance of the modulator 
arrays, and Section VI will describe both optical and electrical 
measurements of the receiver circuits, including the associated 
model-predicted performance. Section VI1 will describe a 
unidirectional bulk optics-based interconnection of two PCB’s 
which implement these device arrays, and Section VI11 will 
conclude. 

11. FET-SEED TRANSCEIVER CIRCUIT DESIGN 

Arrays of individually addressable FET-SEED transmit- 
ters and receivers were fabricated using the batch-fabrication 
process made available through the ARPA-Consortium for 
Optical and Optoelectronic Technologies for Computing (CO- 
OP) and AT&T [8]. The FET-SEED technology monolithically 
integrates 1-pm gate length GaAs field-effect transistors with 
normal-incidence multiple-quantum-well (MQW) modulators 
and detectors to form a smart pixel [9]. Using this technology, 
we designed a 4 x 4 array of electrically addressable, amplified 
differential modulators, and a 4 x 4 array of diode-clamped, 
optical receivers with off-chip drivers [lo]. Fig. 1 shows a 
layout of the chip. The transmitter array is located in the upper 
left corner, and the receiver array is located in the lower right 
comer. In both arrays, the optical windows had dimensions 
of 25 x 25 pm, were separated by 50 pm, and pitched 
at 200 pm. The transmitter circuit operates by electrically 
modulating the voltage drop across the series MQW diode 
pair, subsequently modulating the reflectivity of the diodes 
[ll].  Both the load and switching MESFET transistors were 
25 pm wide. The receiver circuit shown in Fig. 2 operates 
by demodulating dual-rail optical signals which are detected 
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Fig. 1. 
Additional devices are shown including test FET’s and diodes used to measure device dc characteristics. 

Photograph of FET-SEED Chip showing 4 x 4 transmitter array (upper left-hand comer) and 4 x 4 receiver array (lower right-hand comer). 

using a series-connected detector-diode pair to form a diode- 
clamped receiver [12]. The input node to the first FET is 
charged and discharged as a function of the state of the incident 
optical power. The demodulated optical signal drives a three- 
stage amplifier circuit. The first two stages form a series pair 
of inverters with a total of four load and active transistors, 
each transistor being 6 pm wide. The third stage (shaded) is 
a 375-pm power FET designed to drive 100-0 transmission 
lines. 

In addition to the 4 x 4 arrays, individual FET’s, PIN 
junction diodes, and Schottky diodes were included on the 
die for dc probing purposes. The I-V curves of these discrete 
devices were measured and the data was used to develop 
device models. The modeling of these devices and circuits will 
be described in the next section, followed by a description of 
the packaging and performance of the devices in the following 
sections. 

111. DEVICE AND CIRCUIT MODELS 

The FET-SEED circuits were simulated using Microsim 
PSPICE version 5.4 [13]. The FET characteristics were mod- 
eled with the Raytheon model for GaAs MESFET’s [14], [15]. 

Fig. 3 shows a fit of the model-generated I-V curves and 
those obtained experimentally. Typical measured dc currents 
of the transistors at V,, = 0 V were 75.5 mA/mm at v d s  = 
2.0 V, and the measured transconductance at V,, = 0 was 
93.5 mS/mm. The measured threshold voltages were -1.2 V, 
and the drain-source breakdown voltages were greater than 8 
V The MESFET current gain bandwidth, it, was calculated 
using gm/27r(C,, + Cgd), where gm is the model predicted 
FET transconductance, and C,, and c g d  are the modeled 
gate-source and gate-drain capacitances, respectively, at the 
operating point of the MESFET. Using values of C,, = 9.51 
fF and c g d  = 1.1 fF [16], we calculated an fF of 13.5 GHz, 
which is in good agreement with an experimentally measured 
ft of 10 GHz [17]. The diode modeling (Schottky diodes and 
PIN junction diodes) was done using the standard PSPICE- 
based model for diodes. 

In addition to FET’s and diodes, we also modeled the trace 
lines and the bond pads. The trace lines were modeled as RLC 
distributed networks with characteristic impedance 2, , resis- 
tance R,, inductance Lo,  and capacitance C, per unit length. 
The values of these parameters were calculated assuming a 
conventional microstrip geometry for metal interconnects [ 181. 
For the FET-SEED technology, the metal interconnects are 
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300-nm-thick gold with p = 2.2 x 0 cm. The receiver 
signal interconnects are 4 pm wide and the transmitter signal 
interconnects are 5 pm wide. The parameter values of the 
RLC distributed model were calculated to be R, = 0.0183 
R/cm, and C, = 0.5492 pF/cm Lo = 14.26 nWcm. For 
the 75 pmx 75 pm bond pads, the loading capacitance was 
calculated to be 13.85 fF. Using these models for the devices 
and metal interconnects, the high-frequency performance of 
both the transmitter and the receiver circuits was calculated 
and correlated to experimentally measured performances. The 
results of these measurements and associated correlations will 
be described in the next three sections. 
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Fig. 5. Typical experimentally measured (solid) and modeled (dashed) re- 
flectivity change of a modulator driven at 1 GHz with a peak-to-peak voltage 
of 2.0 V. The average (over 16 circuits) experimentally measured rise times 
of the circuit, after deconvoluting the appropriate detector response, was 
triSelitvc = 0.84 ns at V, = 2.0 V. 

IV. FET-SEED TRANSCEIVER PACKAGING 

The FET-SEED transceiver circuits were wire bonded into 
high-speed multilayer ceramic quad-flat packages (QFP) ca- 
pable of carrying forty signals with 2 :  1 signal-to-ground 
ratios. These packages were further integrated onto PCB's 
using a pressure-based, solderless disconnect which had 50- 
R impedance-matching capabilities. By appropriately tuning 
the package to board impedance, these QFPRCB packages 
were capable of supporting forty 3-GHz signal lines. In order 
verify the bandwidth properties of these packages, network 
analyzer measurements were conducted on the assemblies. 
The 3-dB point of the QFPPCB assembly was measured 
to be greater than 3 GHz, with a 0.1-dB transmission loss 
over the 5 KHz-100 MHz range. All optical and electrical 
measurements of the FET-SEED electronics described in the 
following sections were performed on devices packaged at the 
PCB level using these assemblies. 
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Fig. 6.  Experimentally measured rise times (triangles) and fall times (circles) 
versus optical input power of the diode clamped receiver when driven by an 
externally modulated laser with a 200-ps rise time. The fastest rise time was 
2.1 ns. 
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Fig. 7. Output of a received pixel, experimentally measured (solid) and 
modeled (dashed) when driven by a square wave with a 150-ps rise time. 
Typical measured rise times were 2.87 ns. 

V. MODULATOR-ARRAY CHARACTERIZATION 
AND COMPARISON TO THE MODEL 

The optical properties of the modulators and the detectors 
were measured using an 850-nm source, the XI operating point 
for these SEED structures. Fig. 4 shows a plot of the typical 
diode responsivity and reflectivity versus voltage at 850 nm. 
Individual modulators exhibited a reflectivity change of 3 to 
1 with -7.5 V of applied bias, and modulator pairs in the 
transmitter circuit exhibited a 2 (60%) to 1 (30%) reflectivity 
contrast ratio. The detectors had a responsivity of 0.5 AIW. 

High-frequency measurements were performed on the trans- 
mitter circuits by applying 400-Mb/s digital signals to the gate 
of the switching transistor. Individual optical beams were used 
to read out the state of the modulator pair, the reflected light 
being focused onto a fast photodiode (t,,,, = 21 ns) to monitor 
the switching speed. For these measurements, the 4 x 4 array 
was biased at V d d  = 7.3 V and V,, grounded, and the incident 
power on the transmitter modulators was 290 pW. The 400 
Mb/s input signal was applied at two voltages, 1.0 and 2.0 V 
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(a) Experimentally measured hzl values of five receiver pixels 

peak-to-peak. The average (over 16 circuits) experimentally 
measured rise times of the circuit, after deconvoluting the 
appropriate detector response, were = 1.22 ns, and 
trlse,ave = 0.84 ns at V ,  = 1.0 V, and 2.0 V, respectively. The 
3-dB bandwidths, calculated using f3dB = 2.2/2tr;,,, were 

at V, = 1.0 V and 2.0 V, respectively, and the unity gain 
bandwidth was determined to be f o  = 1.51 GHz, and f o  = 
2.04 GHz, assuming an output swing of 7 V and input swing of 
V, = 1 .O V and V, = 2.0 V, respectively. These measurements 
are in close agreement with values obtained by Lentine et al. 
[ 111 The rise times presented in this paper are approximately 
three times larger than those of [ 111, primarily due to the larger 
modulator size (25 x 25 pm versus 10 x 10 pm). Using the 
model described by Lentine et al., it can be shown that the 
rise time is given by cv,/DIFET (if photocurrent is ignored) 
where C is the total capacitance, V, is the output voltage across 
a MQW, and DIFET is the difference in current between the 
load and switching transistors as the output begins to change 
state. The capacitance in this experiment was approximately 12 
times greater due to the larger modulators, but the difference 
in current was approximately four times larger owing to the 
fact that the transistors were equally sized. Combining these 
two differences, we expect the rise time to be approximately 
three times larger than [ 111, as was measured. 

This circuit was modeled using the above device and 
interconnect models. Fig. 5 shows both the experimentally 

found to be f3dB = 291.55 MHz, and f3dB = 431.65 MHz 

Authorized licensed use limited to: McGill University. Downloaded on February 23,2010 at 12:16:25 EST from IEEE Xplore.  Restrictions apply. 



PLANT et al.: DESIGN, MODELING, AND CHARACTERIZATION OF FET-SEED SMART PIXEL TRANCEIVER ARRAYS 1395 

- - Y 1 3 t t -  
40.3 17.7 14.0 40.3 

Printed 
Circuit 
Board 

I 
Fig. 9. A board-to-board optical interconnection constructed using a two-sided optical backplane approach and polarizing optics for beam steering. 

measured (solid) and modeled (dashed) reflectivity change of 
a modulator dnven at 1 GHz with 2.0 V peak-to-peak drive 
voltage. In addition to the electronics, we modeled the SEED 
devices with a current source in parallel with a capacitance. 
The current source depended linearly on the optical power, 
thus the I-V characteristic could be described using a simple 
look-up table [19], and the capacitance was assumed to be 
0.115 fF/pm2 [20]. The transmitter was simulated with a 100- 
pW optical input on both modulators. Based on this model, 
the predicted rise times where as follows: trise = 1.14 ns for 
V, = 1.0 V, and trise = 0.68 ns for V, = 2.0 V. Using these 
values, we predict 3-dB bandwidths of f 3 d ~  = 307 MHz and 
f3dB = 515 MHz, and unity gain bandwidths of f o  = 1.535 
GHz and fo = 1.648 for V, = 1.0 V and 2.0 V, respectively. 
As can be seen, these results are in good agreement with the 
experimentally measured circuit rise times, 3-dB bandwidths, 
and unity gain bandwidths cited above. 

The array was also tested for electrical cross talk in order 
to measure the electrical isolation between adjacent on-die 
trace lines. This measurement was performed by driving one 
transmitter circuit and measuring the voltage cross talk on 
the adjacent addressing trace line. A 2.0-V square wave was 
applied to a transmitter, and this transmitter’s nearest neighbor 
input was monitored using a 50-0 terminated digitizing scope. 
Twenty-mV spikes were induced by these addressing signals. 
We attribute this voltage cross talk to parasitic cross talk in 
adjacent signal lines. Similar measurements were performed 
on next-nearest neighboring lines, but no detectable voltage 
cross talk was found. 

VI. RECEIVER-ARRAY CHARACTERIZATION 
AND COMPARISON TO MODEL 

Both optical and electrical, high-frequency receiver-circuit 
measurements were performed and compared to the predicted 
performance. In the case of the optical measurements, mod- 

ulated light was focused onto one optical window of the 
receiver differential pair. The source of modulated light was 
an 8-GHz electrooptic modulator, which was driven by a 
digital stimulus system with a rise time of 150 ps. The 
output of the electrooptic modulator was measured using a 
fast photodetector, and the rise time was measured to be 200 
ps, with a contrast ratio of 13.98 dB. 

Using this source, the rise and fall times of the receiver 
circuit were measured. The optical power for the high state 
(beam-on) was varied from 100 pW to 400 pW, corresponding 
to switching energies between 69 fJ/b and 100 fJ/b. The results 
of the measurements are shown in Fig. 6, with the fastest rise 
time being 2.7 ns. The longer fall times were due to the fact 
that only one beam was used to drive the receiver. When the 
beam is on, the input node of the receiver is pulled to its 
clamping voltage, giving the fast rise time. When the beam 
is off, the input discharges to the beam-off voltage. If the 
channel were operated differentially, the discharge would be 
faster because an optical input would pull the input node to 
its opposite clamping voltage, thus yielding a faster fall time. 

The high-frequency electrical measurements could be ac- 
complished owing to the fact that the devices were packaged 
using high-bandwidth signal lines for dc biasing. Using a bias 
tee, the clamping diodes could be biased to their optimum 
operating point, and then either digital or analog signals could 
be applied to the input transistor of the three-stage amplifier. 
Because all the clamping diodes on the die are electrically 
tied to two inputs (one for +V,l and one for -Vel), the 
measurement results described below represent a response 
of the entire 16-element array being driven simultaneously 
(not including the power FET’s). Digital measurements were 
performed by modulating the circuit input using a 150-ps rise 
time source, and measuring the output using a digitizing scope. 
Fig. 7 shows a plot of a typical measured response (solid 
line), yielding a rise time of 2.87 ns for a circuit biased to an 
optimum operating point. The correlation between the optical 
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Fig. 10. Eye diagrams of one of the optical channels operating at (a) 50 Mb/s and (b) 155 Mbis, respectively. 

measurements and the electrical measurements is very good. 
Also shown in Fig. 7 is the model-predicted rise time of 0.99 
ns. 

S-parameter measurements on the array were also per- 
formed using a 5-KHz-3.0-GHz network analyzer. In or- 
der to de-embed the circuit performance from the combined 
circuit-plus-package performance, the network analyzer was 
calibrated using a modified QFP/PCB calibration package. 
The calibration package contained a 50-0 termination, a 
short-circuit termination, an open-circuit termination, and a 
straight-through connection. A complete set of S parameters 
was taken on five of the 16 channels, and this data was 
used to calculate the properties of the circuit including the 
current gain, hzl.  In addition, the data was used to measure 
the array uniformity. Fig. 8(a) shows a plot of the measured 
circuit current gain hP1 for five of the channels. From these 
measurements, we found the average f t  = 440 MHz. The data 
oscillates over the first 400 MHz. Based on the care taken 
in calibrating the network analyzer, we are confident these 
oscillations were not due to improper impedance matching to 
the network analyzer; the input and output impedances were 
matched to SO and 100 ns, respectively. Using the above 
models, the predicted hzl (solid) is also shown in Fig. 8(b), 

with a predicted ft = 691 MHz. As is expected based on the 
above digital measurements, the agreement between measured 
and predicted ft is off by a factor of approximately 1.57. 

VII. BOARDTO-BOARD OPTICAL INTERCONNECTION 
A simple board-to-board optical interconnection was con- 

structed using the two-sided optical backplane approach shown 
in Fig. 9. The optomechanics were based on a slotted baseplate 
approach [21]. Light from a Ti:Sapphire laser was delivered 
to the baseplate and collimated using a single-mode fiber 
and collimating optics. A binary phase grating was used to 
generate an 8 x 4 spot array to illuminate the modulators. The 
beam steering was done using a quarterwave plate/polarizing 
beamsplitter (QWPPBS) combination. Vertically polarized 
light was directed onto the transmitter and then circularized 
after one pass through the quarterwave plate. Digital data 
was encoded on the optical beams via the modulator and 
transmitted through the QWPPBS assembly to the receiver 
board. The signal beam was detected, demodulated, and the 
digital data was recovered, this data being driven off-chip 
to the PCB outputs. Fig. 1O(a) and (b) show eye diagrams 
of one of the channels operating at SO Mb/s and 155 Mbh, 
respectively. The data reflects open eyes and good fidelity at 
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theses data rates. The rise times are not as fast as the rise time 
measured by directly modulating the receiver, however, this is 
to be expected based on the fact that they are being driven by 
a source with only a 3-dB (2-to-1) contrast ratio. 

VIII. CONCLUSION 
We have described the design, modeling, and characteriza- 

tion of FET-SEED transceiver arrays. Models were developed 
which accurately predict the experimentally measured perfor- 
mance of 2-D transceiver arrays. These data provide a measure 
of the present state of FET-SEED technology. Finally, these 
transceivers were used to demonstrate a simple unidirectional 
board-to-board optical interconnect capable of operating at 
155Mb/s. This demonstration highlights the potential impact 
this technology could have in providing 2-D optical data links 
for PCB-to-PCB communication within a backplane. 
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