

Integrated photonic systems for applications in telecommunications and biosensing

Andrew Kirk andrew.kirk@mcgill.ca

Department of Electrical and Computer Engineering McGill University

McGill Institute for Advanced Materials

McGill University

McGill Integrated Nanophotonics Research Group May 2010

Imran Cheema

Andrew Kirk

Shaz Taslimi

Sandrine Cote

Andew Kirk, June 2010

Integrated photonic systems

Integrated Nanophotonics Research Group

Current projects

Planar waveguide devices	Biosensors
Etched grating demultiplexer	Integrated SPR
 Photonic crystal superprism 	 Grating-enhanced SPR
 Photonic crystal wavelength 	 Spectro-angular SPR
conversion	 Plasmonic polymer
Hybrid laser integration	 Cavity ring down resonant
 Fabry-Perot comb filter switch 	sensing
	Nano-crystalline cellulose

Integrated Nanophotonics Research Group

Current projects

Planar waveguide devices Biosensors	
Etched grating demultiplexer	Integrated SPR
 Photonic crystal superprism 	Grating-enhanced SPR
 Photonic crystal wavelength 	Spectro-angular SPR
conversion	Plasmonic polymer
Hybrid laser integration	 Cavity ring down resonant
Fabry-Perot comb filter switch	sensing
	Nano crystallino colluloso

INATIO-CI ystailli

CEIIUIUSE

Distributed Etched Diffraction Grating (DEDG)

- Deeply etched sidewalls replaced by distributed reflector
 - E. Bisaillion and A.Kirk, IEEE-LEOS Annual meeting 2006
- Single shallow etch depth simplifies fabrication
 - J. Brouckaert et. al. IEEE PTL Vol. 2, No. 4, 2008
- Dispersive and reflective properties tailored individually
 - This work

Distributed Etched Diffraction Grating

Reflective properties

Reflectivity and bandwidth determined by

- Etch depth (index contrast)
- Bragg order (periodicity Λ)
- Number of periods

Dispersive properties

Resolution, free spectral range, number of channels:

- Operating diffraction order
- Periodicity (d)
- Facet size (s)
- Number of periods
- Blaze angle
- Focal length

Experimental demonstration in SOI 4 channel, CWDM, 3rd order gratings

Integrated photonic systems

Performance

- 4 channel CWDM
- TE polarization
- 5 dB insertion loss
- 25 dB crosstalk

A.Jafari and A.G.Kirk, 'Distributed Etched Diffraction Grating Demultiplexer with Engineered Response', Proc. IEEE-LEOS Annual Meeting 2008, Newport Beach, CA, 2008 Andew Kirk, June 2010 Integrated photonic systems 10

McGill Integrated Nanophotonics Research Group Current projects

Planar waveguide devices	Biosensors
• Etched grating demultiplexer	Integrated SPR
Photonic crystal superprism	Grating-enhanced SPR
Photonic crystal wavelength	Spectro-angular SPR
conversion	Plasmonic polymer
Hybrid laser integration	Cavity ring down resonant
 Fabry-Perot comb filter switch 	sensing
	Nano-crystalline cellulose

Interferometric electro-optic switches

- Integrated Mach-Zender waveguide switches developed 30 years ago, demonstrated in LiNbO₃
- Scaling beyond 8x8 challenging due to waveguide bend limits
- Electro-optic switches based on Fabry-Perot etalon filters are typically narrow band due to small Δn
- However there is the possibility of using free-space slab approach for better scalability

Filter Design: Comb Response

- EO effect shifts the filter response by 1 nm only
- Reduced the filter free-spectral range to create a comb filter with a 200 GHz Spacing
- Bandwidth > 30 nm

M.Menard, A.G.Kirk ,'Integrated Fabry-Perot Comb Filters for Optical Space Switching', *J.Lightwave Technol.*, **28**, pp 768-775, 2010

Andew Kirk, June 2010

Integrated photonic systems

Four coupled cavities, 2nd order mirrors

Integrated 2 x 2 optical switch

Andew Kirk, June 2010

Integrated photonic systems

- Fabrication errors shifted the response to the L-band and reduced cavity coupling
- High loss (20 dB) due to misalignment of the input/output waveguides. Additional loss due to filters < 1dB

Even Channel Reflection Crosstalk × Even Channel Transmission Crosstalk
 Fluctuation in crosstalk and extinction ratio due to

ripples in the wavelength response

Prototype 10 Gb/s BERT

 Transmission power penalty caused by the combination of collimation & radiation, which brought the output power below the SOA sensitivity floor

Switch Fabric Layouts

- Planar waveguide devices
- Etched grating demultiplexer
- Photonic crystal superprism
- Photonic crystal wavelength conversion
- Hybrid laser integration
- Fabry-Perot comb filter switch

Integrated SPR

Biosensors

- Grating-enhanced SPR
- Spectro-angular SPR
- Plasmonic polymer
- Cavity ring down resonant
 - sensing
- Nano-crystalline cellulose

Photonic biosensor Types

Interferometer Biosensor

Photonic Crystal Biosensor

Waveguide Biosensor

Optical Fiber Biosensor

Micro-Cavity Biosensor

Motivation

1. Improving Sensitivity for Biomarker-Based Diagnosis

2. Drug discovery

Integrated photonic systems

Motivation:

Improving Sensitivity for Biomarker-Based Diagnosis

Biosensor Requirements

- Multiple biomarker detection for effective diagnosis
- Small proteins (< 100 kDa)
- Low concentration pg ng /mL
- Require Real-time sampling and on-going measurement for fluctuations
- Label free
- Integrated biosensor

Treatment

Transduction mechanisms

- Affinity of sensor is determined by functionalized surface
- Many transduction mechanisms exist:
- Mass sensing
 - E.g. Quartz crystal microbalance
- Electrical sensing
 - E.g. capacitative sensing
- Optical sensing
 - Evanescent wavesensors
 - Surface plasmon resonance (SPR) sensors

Surface plasmon polariton

- Surface plasmon: electron density wave on a metal, excited by incident light
- Plasmon excited when momentum of incoming wave matches that of plasmon
- Results in *reflectance dip*

$$k_{sp} = \frac{\omega}{c} \sqrt{\frac{\varepsilon_D \varepsilon_m}{\varepsilon_D + \varepsilon_m}}$$

 ω : frequency, ϵ : dielectric constant: *c*: speed of light

Surface Plasmon Resonance Sensing

- Label-free sensing technique
- Picomolar concentrations detectable
- $10^{-6} 10^{-8}$ refractive index units

Reflection dip

Wavelength, Incident Angle

Commercial SPR

Several commercial SPR analysis systems exist

Angle scanning sensors

• E.g. Biacore

Angular spectrum sensor

Integated SPR sensor

- Angle sensing SPR
- **Objective**: Replace external focusing optics with moldable diffractive elements on disposable sensor head

W-Y Chien, M. Z. Khalid, X.D. Hoa, A. G. Kirk, 'Monolithically Integrated Surface Plasmon Resonance Sensor Based on Focusing Diffractive Optic Element for Optofluidic Platforms', *J.Sensors and Actuators B*, **138**, 441-445, 2009

Andew Kirk, June 2010

Integrated photonic systems

Fabricated device

Results: Refractive index measurement

W-Y Chien, M. Z. Khalid, X.D. Hoa, A. G. Kirk, 'Monolithically Integrated Surface Plasmon Resonance Sensor Based on Focusing Diffractive Optic Element for Optofluidic Platforms', *J.Sensors and Actuators B*, **138**, 441-445, 2009

Integrated photonic systems

McGill Integrated Nanophotonics Research Group Current projects

Planar waveguide devices	Biosensors
Etched grating demultiplexer Photonic crystal superprism	 Integrated SPR Grating-enhanced SPR
Photonic crystal wavelength	 Spectro-angular SPR
Conversion Hybrid laser integration	 Plasmonic polymer Cavity ring down resonant
• Fabry-Perot comb filter switch	 sensing Nano-crystalline cellulose

Enhancing SPR response

- To increase SPR sensitivity we need to amplify the effects of small changes in refractive index at the surface
- Sensitivity is measured as either:
 - Change in dip angle vs. refractive index ($\Delta\theta/\Delta\text{RIU}$) or
 - Change is dip wavelength vs. refractive index ($\Delta\lambda/\Delta$ RIU)
- Two possible approaches:
 - Increase field concentration and penetration (e.g. use nanoparticles)
 - Use optically resonant structures

Periodic metallic gratings

Flat surface dispersion curve

Periodic metallic gratings

• Creates bandgap in dispersion curve

10 nm grating dispersion curve

Effect of grating

- Plasmon propagation is forbidden at the bandgap
- Creates plasmon standing waves:
 - Increases electric field penetration into dielectric
 - Increases speed at which dip moves as a function of refractive index
- Results in increased sensitivity

Rigorous coupled wave analysis simulation for one period of grating

Sensitivity enhancement

Sinusoidal gratings show a 6 x increase in sensitivity vs. flat

However, for a given wavelength, range is limited. Increase range by measuring in two-dimensions (wavelength and angle)

C.J. Alleyne, A.G. Kirk, R.C. McPhedran, N-A.P. Nicorovici, and D. Maystre, 'Enhanced SPR sensitivity using periodic metallic structures', OSA Optics Express, **15**, pp 8163-1869, 2007

McGill Experimental evaluation: Grating + patterned surface chemistry

- Enhanced SPR response
- Increased electromagnetic gradients
- Surface receptors with optimized orientation, density and non-specific absorption
- Generate biochemical optical contrast

X.D. Hoa, M. Tabrizian, A. G. Kirk, Enhanced SPR Response from Patterned Immobilization of Surface Bioreceptors on Nano-gratings, *J.Biosensors and Bioelectronics*, 24 (2009) 3043–3048, 2009.

Andew Kirk, June 2010

Integrated photonic systems

Rigorous Coupled Wave Analysis Modelling

X.D. Hoa, M. Tabrizian, A. G. Kirk, 'Rigorous Coupled-Wave Analysis of Surface Plasmon Enhancement from Patterned Immobilization on Nano-Gratings', *J.Biosensors*, doi:10.1155/2009/713641, 2009.

McGill Microfabrication and Surface Chemistry

Protein Repellent Chemistry (PASSIVE)

- 1mM of PEO in water
- Overnight incubation
- 1H in Acetone/MEK
- 1 min ultrasonication
- 1mM of MCHA in ethanol
- 3H incubation time

X.D. Hoa, M. Tabrizian, A. G. Kirk, Enhanced SPR Response from Patterned Immobilization of Surface Bioreceptors on Nano-gratings, *J.Biosensors and Bioelectronics*, 24 (2009) 3043–3048, 2009.

Characterization via SPR-Imaging

Injection of Anti-TNF- α

SPR-Imaging – Injection of TNF- α

- Mapped immobilization is advantageous
- Functionalized trough configuration shows weak response
- Significant improvement is measured in the angular sensitivity
- Increased accessibility of antigen to surface immobilized antibody

- Planar waveguide devices
- Etched grating demultiplexer
- Photonic crystal superprism
- Photonic crystal wavelength conversion
- Hybrid laser integration
- Fabry-Perot comb filter switch

Integrated SPR

Biosensors

- Grating-enhanced SPR
- Spectro-angular SPR
- Plasmonic polymer
- Cavity ring down resonant sensing
 - Nano-crystalline cellulose

2D vs. 1D SPR

Why use 2D SPR?

Possibility of using image analysis techniques.

McGill Image Analysis Technique

McGill Image Analysis Technique

Associate the weights w_i with initial index n_i

C.J. Alleyne, A. G. Kirk, P.G. Charette, 'Numerical method for high accuracy index of refraction estimation from surface plasmon photonic bandgap structures.', OSA Optics Express **16** (24) pp 493-503, 2008

🐯 McGill **Experimental Implementation** Dual channel spectro-angular configuration for measuring SPR in 2D.

•The second channel is used as a reference for drift elimination

Real-Time Data Analysis

McGill Spectro-Angular experimental results

Monitoring SAM deposition and BSA binding

DPM projections

😵 McGill Spectro-Angular as Biosensing Platform 1.2^{×10[⊀]}

- Oxacillin (mw 441)injections were introduced to flowcell containing BSA:SPR chip
- RIU shift relative to quantity of drug bound

C.Alleyne, P.Roche, A.G.Kirk, 'Spectro-angular surface plasmon biosensor applied to drug binding assays', Proc. IEEE-Photonics Society Annual Meeting, WR3, Antalya, Turkey, 2009

Localised surface plasmon resonance

Lycergus cup (British museum)

, ** À	
1990 - 19900 - 19900 - 19900 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	

Andew Kirk, June 2010

Integrated photonic biosensors

Collective resonance of nanorods

Nanofabricated gold nanorods (500 nm x 50 nm)

Nanorods in sol-gel

'Plasmonic sol-gel': Au Nanorods bound into porous polymer matrix

> P.Roche and A.Kirk, unpublished work

Andew Kirk, June 2010

Integrated photonic biosensors

McGill Plasmonic polymer: Sensitivity to

index change

P.Roche and A.Kirk, unpublished work

Summary

- Applications of slab mode propagation in waveguides:
 - Distributed etched grating demultiplexer
 - Integrated comb filter switch
- Surface plasmon resonance sensors
 - Integrated systems
 - Applications of nanostructures and patterned chemistry
 - Spectro-angular (2-D) system

Training program in Integrated Sensor Systems McGill, Ecole Polytechnique, Sherbrooke, INRS

- Multidisciplinary training program focusing on the design, fabrication, integration and packaging of sensors
- 104 graduate and undergraduate students to be trained over 6 years
- Extensive hands-on training in design, fabrication and characterization
- International exchange and industrial internships form a key part of the program
- First graduate trainees will commence in September 2010
- Director: Andrew Kirk

Microfluidics

Optical sensors